
Embedded Linux Conference 2017

Embedded Linux size reduction
techniques

Michael Opdenacker
free electrons
michael.opdenacker@free-electrons.com

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 1/1

Michael Opdenacker

▶ Michael Opdenacker
▶ Founder and Embedded Linux engineer at free

electrons
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Long time interest in embedded Linux boot
time, and one of its prerequisites: small system
size.

▶ From Orange, France
Penguin from Justin Ternet

(https://openclipart.org/detail/182875/pinguin)

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 2/1

https://openclipart.org/detail/182875/pinguin

Why reduce size?

There are multiple reasons for having a small kernel and system
▶ Run on very small systems (IoT)
▶ Run Linux as a bootloader
▶ Boot faster (for example on FPGAs)
▶ Reduce power consumption

Even conceivable to run the whole system in CPU internal RAM or cache (DRAM
is power hungry and needs refreshing)

▶ Security: reduce the attack surface
▶ Cloud workloads: optimize instances for size and boot time.
▶ Spare as much RAM as possible for applications and maximizing performance.

See https://tiny.wiki.kernel.org/use_cases

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 3/1

https://tiny.wiki.kernel.org/use_cases

Reasons for this talk

▶ No talk about size since ELCE 2015
▶ Some projects stalled (Linux tinification, LLVM Linux...)
▶ Opportunity to have a look at solutions I didn’t try: musl library, Toybox, gcc

LTO, new gcc versions, compiling with Clang...
▶ Good to have a look again at that topic, and gather people who are still interested

in size, to help them and to collect good ideas.
▶ Good to collect and share updated figures too.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 4/1

How small can a normal Linux system be?

▶ RAM
▶ You need 2-6 MB of RAM for an embedded kernel
▶ Need at least 8-16 MB to leave enough space for user-space (if user-space is not too

complex)
▶ More RAM helps with performance!

▶ Storage
▶ You need 2-4 MB of space for an embedded kernel
▶ User space can fit in a few hundreds of KB.
▶ With a not-too-complex user-space, 8-16 MB of storage can be sufficient.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 5/1

Compiler optimizations

▶ gcc offers an easy-to-use -Os option for minimizing binary size.
▶ It is essentially the optimizations found in -O2 without the ones that increase size

See https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html for all
available optimizations

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 6/1

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Using a recent compiler

Compiling for ARM versatile, Linux 4.10
▶ With gcc 4.7: 407512 bytes (zImage)
▶ With gcc 6.2: 405968 bytes (zImage, -0.4%)

A minor gain!

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 7/1

Using gcc LTO optimizations

LTO: Link Time Optimizations
▶ Allows gcc to keep extra source information to make further optimizations at link

time, linking multiple object files together. In particular, this allows to remove
unused code.

▶ Even works with programs built from a single source file! Example: oggenc from
http://people.csail.mit.edu/smcc/projects/single-file-
programs/oggenc.c (1.7 MB!)

▶ How to compile with LTO:
gcc -Os -flto oggenc.c -lm

See again https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html for
details.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 8/1

http://people.csail.mit.edu/smcc/projects/single-file-programs/oggenc.c
http://people.csail.mit.edu/smcc/projects/single-file-programs/oggenc.c
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

gcc LTO optimizations results

Compiling oggenc.c
▶ With gcc 6.2 for x86_64:

▶ Without LTO: 2122624 bytes (unstripped), 1964432 bytes (stripped)
▶ With LTO: 2064480 bytes (unstripped, -2.7%), 1915016 bytes (stripped, -2.6%)

▶ With gcc 6.2 for armelhf:
▶ Without LTO: 1157588 bytes (unstripped), 1018972 bytes (stripped)
▶ With LTO: 1118480 bytes (unstripped, -3.4%), 990248 bytes (stripped, -2.8%)

Note: the x86_64 size is not meant to be compared with arm code. 64 bit code is
bigger than 32 bit code, that’s expected.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 9/1

gcc vs clang

Let’s try to compile oggenc.c again:
▶ Compiled with gcc 6.2.0 on x86_64:

gcc oggenc.c -lm -Os; strip a.out
Size: 1964432 bytes

▶ Compiled with clang 3.8.1 on x86_64:
clang oggenc.c -lm -Os; strip a.out
Size: 1865592 bytes (-5%)

▶ gcc can catch up a little with the LTO option:
gcc oggenc.c -lm -flto -Os; strip a.out
Size: 1915016 bytes (-2.7%)

Note that gcc can win for very small programs (-1.2 % vs clang on hello.c).

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 10/1

ARM: arm vs thumb instruction sets

▶ In addition to the arm 32 bit instruction set, the ARM 32 bit architecture also
offers the Thumb instruction set, which is supposed to be more compact.

▶ You can use arm-linux-objdump -S to distinguish between arm and thumb code.

00011288 <main>:
 11288: e92d4870 push {r4, r5, r6, fp, lr}
 1128c: e28db010 add fp, sp, #16
 11290: e24ddf61 sub sp, sp, #388 ; 0x184

32 bit instructions

Addresses
multiples of 4

Arm code
16 bit instructions

Addresses
multiples of 2

00011288 <main>:
 11288: b5f0 push {r4, r5, r6, r7, lr}
 1128a: b0e5 sub sp, #404 ; 0x194

1128c: af06 add r7, sp, #24

Thumb code

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 11/1

ARM: arm vs thumb instruction sets (2)

▶ To compile in arm mode:
arm-linux-gnueabihf-gcc -marm oggenc.c -lm
Result: 1323860 bytes

▶ To compile in thumb mode (default mode for my compiler!):
arm-linux-gnueabihf-gcc -mthumb oggenc.c -lm
Result: 1233716 bytes (-6.8%)

▶ Notes:
▶ Thumb instructions are more compact but more are needed, which explains the

limited size reduction.
▶ Thumb mode can be the default for your compiler!
▶ In my tests with -marm, the binary was a mix of Arm and Thumb code.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 12/1

How to get a small kernel?

▶ Run make tinyconfig (since version 3.18)
▶ make tinyconfig is make allnoconfig plus configuration settings to reduce

kernel size
▶ You will also need to add configuration settings to support your hardware and the

system features you need.

tinyconfig:
(Q)(MAKE) -f $(srctree)/Makefile allnoconfig tiny.config

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 13/1

kernel/configs/tiny.config

CONFIG_CC_OPTIMIZE_FOR_PERFORMANCE is not set
CONFIG_CC_OPTIMIZE_FOR_SIZE=y
CONFIG_KERNEL_GZIP is not set
CONFIG_KERNEL_BZIP2 is not set
CONFIG_KERNEL_LZMA is not set
CONFIG_KERNEL_XZ=y
CONFIG_KERNEL_LZO is not set
CONFIG_KERNEL_LZ4 is not set
CONFIG_OPTIMIZE_INLINING=y
CONFIG_SLAB is not set
CONFIG_SLUB is not set
CONFIG_SLOB=y

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 14/1

arch/x86/configs/tiny.config

CONFIG_NOHIGHMEM=y
CONFIG_HIGHMEM4G is not set
CONFIG_HIGHMEM64G is not set

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 15/1

tinyconfig Linux kernel size (arm)

3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

text

data

bss

full

Version

B
yt

es

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 16/1

tinyconfig Linux kernel size (x86)

3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10
0

500000

1000000

1500000

2000000

2500000

text

data

bss

total

version

by
te

s

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 17/1

Linux kernel size notes

▶ We reported the vmlinux file size, to reflect the size that the kernel would use in
RAM.

▶ However, the vmlinux file was not stripped in our experiments. You could get
smaller results.

▶ On the other hand, the kernel will make allocations at runtime too. Counting on
the stripped kernel size would be too optimistic.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 18/1

Kernel size on a system that boots

Linux 4.10 booting on QEMU ARM VersatilePB
▶ zImage: 405472 bytes
▶ text: 972660
▶ data: 117292
▶ bss: 22312
▶ total: 1112264

Minimum RAM I could boot this kernel with: 4M (3M was too low). Not worse than
10 years back!

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 19/1

State of the kernel tinification project

▶ Stalled since Josh Triplett’s patches were removed from the linux-next tree
▶ See https://lwn.net/Articles/679455

▶ Patches still available on
https://git.kernel.org/cgit/linux/kernel/git/josh/linux.git/

▶ Removing functionality through configuration settings may no longer be the way
to go, as the complexity of kernel configuration parameter is already difficult to
manage.

▶ The future may be in automatic removal of unused features (system calls,
command line options, /proc contents, kernel command line parameters...)

▶ Lack of volunteers with time to drive the mainlining effort anyway.
Follow the kernel developers discussion about this topic:
https://lwn.net/Articles/608945/. That was in 2014!

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 20/1

https://lwn.net/Articles/679455
https://git.kernel.org/cgit/linux/kernel/git/josh/linux.git/
https://lwn.net/Articles/608945/

gcc LTO and the Linux kernel

Patches proposed by Andi Kleen in 2012
▶ Such optimizations would allow performance improvements as well as some size

reduction by eliminating unused code (-6% on ARM, reported by Tim Bird).
▶ The last time the LTO patches were proposed, using LTO could create new issues

or make problems harder to investigate. Linus didn’t trust the toolchains at that
time.

▶ See https://lwn.net/Articles/512548/

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 21/1

https://lwn.net/Articles/512548/

Kernel XIP

XIP: eXecution In Place
▶ Allows to keep the kernel text in flash (NOR flash required).
▶ Only workable solution for systems with very little RAM
▶ ARM is apparently the only platform supporting it

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 22/1

How to help with kernel tinification (1)

▶ Look for obj-y in kernel Makefiles:
obj-y = fork.o exec_domain.o panic.o \

cpu.o exit.o softirq.o resource.o \
sysctl.o sysctl_binary.o capability.o ptrace.o user.o \
signal.o sys.o kmod.o workqueue.o pid.o task_work.o \
extable.o params.o \
kthread.o sys_ni.o nsproxy.o \
notifier.o ksysfs.o cred.o reboot.o \
async.o range.o smpboot.o ucount.o

▶ What about allowing to compile Linux without ptrace support (14K on arm) or
without reboot (9K)?

▶ Another way is to look at the compile logs and check whether/why everything is
needed.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 23/1

How to help with kernel tinification (2)

▶ Look for tinification opportunities, looking for the biggest symbols:
nm --size-sort vmlinux

▶ Look for size regressions with the Bloat-O-Meter:
> ./scripts/bloat-o-meter vmlinux-4.9 vmlinux-4.10
add/remove: 101/135 grow/shrink: 155/109 up/down: 19517/-19324 (193)
function old new delta
page_wait_table - 2048 +2048
sys_call_table - 1600 +1600
cpuhp_bp_states 980 1800 +820
...

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 24/1

LLVM Linux project

http://llvm.linuxfoundation.org/

▶ Using Clang to compile the Linux kernel also opens the door
to performance and size optimizations, possibibly even
better than what you can get with gcc LTO.

▶ Unfortunately, the project looks stalled since 2015.
▶ News: Bernhard Rosenkränzer from Linaro has updated the

patchset and should start pushing upstream soon.
Reference: https://android-
git.linaro.org/kernel/hikey-clang.git, branch
android-hikey-linaro-4.9-clang

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 25/1

http://llvm.linuxfoundation.org/
https://android-git.linaro.org/kernel/hikey-clang.git
https://android-git.linaro.org/kernel/hikey-clang.git

Userspace - BusyBox vs Toybox

Compiled on ARM with gcc 5.4 (dynamically linked with glibc)

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 26/1

BusyBox vs Toybox - shell only

Compiled on ARM with gcc 5.4 (dynamically linked with glibc)

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 27/1

BusyBox vs Toybox - Conclusions

▶ Toybox wins if your goal is to reduce size and have a tiny rootfs
▶ BusyBox wins in terms of configurability, and in terms of functionality for more

elaborate needs.
▶ Comments from Rob Landley: the Toybox shell is too experimental to be used at

the moment, and is meant to become a bash replacement. If you’re looking for a
small shell, you may look at mksh (https://www.mirbsd.org/mksh.htm)

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 28/1

https://www.mirbsd.org/mksh.htm

glibc vs uclibc vs musl (static)

Let’s compile and strip BusyBox 1.26.2 statically and compare the size
▶ With gcc 6.3, armel, musl 1.1.16:

183348 bytes
▶ With gcc 6.3, armel, uclibc-ng 1.0.22 :

210620 bytes.
▶ With gcc 6.2, armel, glibc:

755088 bytes
Note: BusyBox is automatically compiled with -Os and stripped.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 29/1

glibc vs uclibc vs musl (dynamic)

Let’s compile and strip BusyBox 1.26.2 dynamically and compare the size
▶ With gcc 6.3, armel, musl 1.1.16:

92948 bytes
▶ With gcc 6.3, armel, uclibc-ng 1.0.22 :

92116 bytes.
▶ With gcc 6.2, armel, glibc:

100336 bytes

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 30/1

glibc vs uclibc vs musl - small static executables

Let’s compile and strip a hello.c program statically and compare the size
▶ With gcc 6.3, armel, musl 1.1.16:

7300 bytes
▶ With gcc 6.3, armel, uclibc-ng 1.0.22 :

67204 bytes.
▶ With gcc 6.2, armel, glibc:

492792 bytes

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 31/1

Using super strip

sstrip (http://www.muppetlabs.com/~breadbox/software/elfkickers.html)
removes ELF contents that are not needed for program execution.

▶ Expect to save only a few hundreds or thousands of bytes
▶ sstrip is architecture independent (unlike strip) and is trivial to compile

Example with the small static program we’ve just compiled:
▶ With gcc 6.3, armel, musl 1.1.16: 7300 to 6520 bytes (-780)
▶ With gcc 6.3, armel, uclibc-ng 1.0.22: 67204 bytes to 66144 bytes (-1060)
▶ With gcc 6.2, armel, glibc: 492792 to 491208 bytes (-1584)

With BusyBox statically compiled with the musl library:
▶ From 183012 to 182289 (-723)

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 32/1

http://www.muppetlabs.com/~breadbox/software/elfkickers.html

Other lightweight libraries

▶ diet libc (http://www.fefe.de/dietlibc/
▶ Latest release in 2013! Not supported by toolchain generators.
▶ Was meant to generate small static executables

▶ klibc (https://www.kernel.org/pub/linux/libs/klibc/)
▶ Latest release in 2014! Not supported by toolchain generators.
▶ Was meant to generate small static executables for use in initramfs filesystems.
▶ Need reviving?

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 33/1

http://www.fefe.de/dietlibc/
https://www.kernel.org/pub/linux/libs/klibc/

Optimizing libraries

▶ You can use mklibs (git://anonscm.debian.org/d-i/mklibs, but that just
copies the libraries which are used for a given set of executables. Build systems
can already do that.

▶ Would need something that removes unused symbols from libraries. Is the Library
Optimizer from MontaVista
(https://sourceforge.net/projects/libraryopt/) still usable?

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 34/1

git://anonscm.debian.org/d-i/mklibs
https://sourceforge.net/projects/libraryopt/

Achieving small filesystem size

▶ For very small systems, booting on an initramfs is the best solution. It allows to
boot earlier and faster too (no need for filesystem and storage drivers).

▶ A single static executable helps too (no libraries)
▶ For bigger sizes, compressing filesystems are useful:

▶ SquashFS for block storage
▶ JFFS2 for flash (UBI has too much overhead for small partitions)
▶ ZRAM (compressed block device in RAM)

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 35/1

Conclusions

▶ Though there apparently hasn’t been recent mainlining efforts, the kernel size can
remain very small (405K compressed on ARM, running on a system with 4M of
RAM).

▶ Compilers: use clang or gcc LTO (not for the kernel yet)
▶ New C library worth using: musl
▶ Worth giving Toybox a try too, when simple command line utilities are sufficient.
▶ Still significant room for improvement. Difficult to make things removable without

increasing the kernel parameter and testing complexity, though.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 36/1

BoF part

▶ Any recent achievements to report?
▶ Any other resources you are using?
▶ Volunteers to join the size effort?
▶ News from the LLVM Linux project?
▶ Community friendly hardware we could use for development efforts? Supporting

special hardware with tight requirements is a good reason for getting code
accepted.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 37/1

Useful resources

▶ Home of the Linux tinification project https://tiny.wiki.kernel.org/
▶ Ideas ideas and projects which would be worth reviving

http://elinux.org/Kernel_Size_Reduction_Work

▶ Tim Bird - Advanced size optimization of the Linux kernel (2013)
http://events.linuxfoundation.org/sites/events/files/lcjp13_bird.pdf

▶ Pieter Smith - Linux in a Lightbulb: How Far Are We on Tinification (2015)
http://www.elinux.org/images/6/67/Linux_In_a_Lightbulb-
Where_are_we_on_tinification-ELCE2015.pdf

▶ Vitaly Wool - Linux for Microcontrollers: From Marginal to Mainstream (2015)
http://www.elinux.org/images/9/90/Linux_for_Microcontrollers-
_From_Marginal_to_Mainstream.pdf

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 38/1

https://tiny.wiki.kernel.org/
http://elinux.org/Kernel_Size_Reduction_Work
http://events.linuxfoundation.org/sites/events/files/lcjp13_bird.pdf
http://www.elinux.org/images/6/67/Linux_In_a_Lightbulb-Where_are_we_on_tinification-ELCE2015.pdf
http://www.elinux.org/images/6/67/Linux_In_a_Lightbulb-Where_are_we_on_tinification-ELCE2015.pdf
http://www.elinux.org/images/9/90/Linux_for_Microcontrollers-_From_Marginal_to_Mainstream.pdf
http://www.elinux.org/images/9/90/Linux_for_Microcontrollers-_From_Marginal_to_Mainstream.pdf

Interesting talks at ELC

▶ Tuesday - 4:20pm
Tutorial: building the Simplest Possible Linux System - Rob Landley

▶ Tuesday - 5:20pm
Optimizing C for Microcontrollers - Best Practices - Khem Raj

▶ Thursday - 3:30pm
GCC/Clang Optimizations for Embedded Linux - Khem Raj

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 39/1

Questions?

Michael Opdenacker
michael.opdenacker@free-electrons.com

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2017/elc/opdenacker-embedded-linux-size-reduction/

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 40/1

http://free-electrons.com/pub/conferences/2017/elc/opdenacker-embedded-linux-size-reduction/

Notes from discussions with the audience (1)

▶ Bernhard Rosenkränzer suggested to try the Bionic C library from Android in
standard Linux. It’s not perfect but could be useful in some cases.

▶ Clang has a new -Oz optimization option that goes further than -Os

▶ Rob Landley mentioned his 2013 patchset to address limitations in the initramfs
booting approach. See https://lkml.org/lkml/2013/7/9/501

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 41/1

https://lkml.org/lkml/2013/7/9/501

Notes from discussions with the audience (2)

▶ In the search for a small community friendly board with very little RAM (no more
than 2-4 MB of RAM), it seems that the most popular architecture is STM32.

▶ Musl library:
▶ To build a Musl toolchain, in addition to Crosstool-ng, it is also possible to use the

musl-cross-make project (https://github.com/richfelker/musl-cross-make)
▶ Musl is used in the Alpine Linux distribution (https://www.alpinelinux.org/,

focusing on small size and security. You could use it if your system needs a
distribution.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 42/1

https://github.com/richfelker/musl-cross-make
https://www.alpinelinux.org/

