Embedded Linux size reduction
techniques

Michael Opdenacker

free electrons
michael.opdenacker@free-electrons.com

» Michael Opdenacker
» Founder and Embedded Linux engineer at free
electrons
» Embedded Linux expertise
» Development, consulting and training
» Strong open-source focus

» Long time interest in embedded Linux boot
time, and one of its prerequisites: small system
size.

» From Orange, France

Penguin from Justin Ternet

(https://openclipart.org/detail/182875/pinguin)

https://openclipart.org/detail/182875/pinguin

There are multiple reasons for having a small kernel and system
» Run on very small systems (loT)
» Run Linux as a bootloader
» Boot faster (for example on FPGAs)

» Reduce power consumption
Even conceivable to run the whole system in CPU internal RAM or cache (DRAM
is power hungry and needs refreshing)

» Security: reduce the attack surface
» Cloud workloads: optimize instances for size and boot time.
» Spare as much RAM as possible for applications and maximizing performance.

See https://tiny.wiki.kernel.org/use_cases

https://tiny.wiki.kernel.org/use_cases

» No talk about size since ELCE 2015
Some projects stalled (Linux tinification, LLVM Linux...)

v

» Opportunity to have a look at solutions | didn’t try: musl library, Toybox, gcc
LTO, new gcc versions, compiling with Clang...

> Good to have a look again at that topic, and gather people who are still interested
in size, to help them and to collect good ideas.

v

Good to collect and share updated figures too.

» RAM
> You need 2-6 MB of RAM for an embedded kernel
> Need at least 8-16 MB to leave enough space for user-space (if user-space is not too
complex)
» More RAM helps with performance!

» Storage

» You need 2-4 MB of space for an embedded kernel
» User space can fit in a few hundreds of KB.
» With a not-too-complex user-space, 8-16 MB of storage can be sufficient.

» gcc offers an easy-to-use -0s option for minimizing binary size.

> It is essentially the optimizations found in -02 without the ones that increase size

See https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html for all
available optimizations

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Compiling for ARM versatile, Linux 4.10
» With gcc 4.7: 407512 bytes (zlmage)
» With gcc 6.2: 405968 bytes (zlmage, -0.4%)

A minor gain!

LTO: Link Time Optimizations

> Allows gcc to keep extra source information to make further optimizations at link

time, linking multiple object files together. In particular, this allows to remove
unused code.

» Even works with programs built from a single source filel Example: oggenc from
http://people.csail.mit.edu/smcc/projects/single-file-
programs/oggenc.c (1.7 MB!)

» How to compile with LTO:
gcc -0s -flto oggenc.c -1m

See again https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html for
details.

http://people.csail.mit.edu/smcc/projects/single-file-programs/oggenc.c
http://people.csail.mit.edu/smcc/projects/single-file-programs/oggenc.c
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Compiling oggenc.c
> With gcc 6.2 for x86_64:
» Without LTO: 2122624 bytes (unstripped), 1964432 bytes (stripped)
» With LTO: 2064480 bytes (unstripped, -2.7%), 1915016 bytes (stripped, -2.6%)
» With gcc 6.2 for armelhf:

» Without LTO: 1157588 bytes (unstripped), 1018972 bytes (stripped)
> With LTO: 1118480 bytes (unstripped, -3.4%), 990248 bytes (stripped, -2.8%)

Note: the x86_64 size is not meant to be compared with arm code. 64 bit code is
bigger than 32 bit code, that's expected.

Let's try to compile oggenc.c again:

» Compiled with gcc 6.2.0 on x86_64:
gcc oggenc.c —-1m -0s; strip a.out
Size: 1964432 bytes

» Compiled with clang 3.8.1 on x86_64:
clang oggenc.c -1m -0s; strip a.out
Size: 1865592 bytes (-5%)

» gcc can catch up a little with the LTO option:
gcc oggenc.c -1m -flto -0Os; strip a.out
Size: 1915016 bytes (-2.7%)

Note that gcc can win for very small programs (-1.2 % vs clang on hello.c).

@

» In addition to the arm 32 bit instruction set, the ARM 32 bit architecture also
offers the Thumb instruction set, which is supposed to be more compact.

» You can use arm-linux-objdump -S to distinguish between arm and thumb code.

Arm code
32 bit instructions

00011288 <main>:

11288: ©92d4870

1128c: ©28db010

11290: e24ddf61l
Addresses

multiples of 4

push
add
sub

{r4, r5, r6, fp, 1r}

fp, sp, #16
sp, sp, #388

; 0x184

Thumb code

16 bit instructions.

00011288 <main>:

11288: b5£0 push
1128a: boes sub
1128c: af06 add

Addresses

multiples of 2

ir4, x5, r6, r7, lr}
sp, #404 ; 0x194
r7, sp, #24

» To compile in arm mode:

arm-linux-gnueabihf-gcc -marm oggenc.c -1m
Result: 1323860 bytes

» To compile in thumb mode (default mode for my compiler!):
arm-linux-gnueabihf-gcc -mthumb oggenc.c -1m
Result: 1233716 bytes (-6.8%)
> Notes:
» Thumb instructions are more compact but more are needed, which explains the
limited size reduction.
» Thumb mode can be the default for your compiler!
> In my tests with -marm, the binary was a mix of Arm and Thumb code.

» Run make tinyconfig (since version 3.18)

» make tinyconfig is make allnoconfig plus configuration settings to reduce
kernel size

> You will also need to add configuration settings to support your hardware and the
system features you need.

tinyconfig:
(Q)(MAKE) -f $(srctree)/Makefile allnoconfig tiny.config

CONFIG_CC_OPTIMIZE_FOR_PERFORMANCE is not set
CONFIG_CC_OPTIMIZE_FOR_SIZE=y

CONFIG_KERNEL_GZIP is not set
CONFIG_KERNEL_BZIP2 is not set
CONFIG_KERNEL_LZMA is not set
CONFIG_KERNEL_XZ=y

CONFIG_KERNEL_LZO is not set

CONFIG_KERNEL_LZ4 is not set
CONFIG_OPTIMIZE_INLINING=y

CONFIG_SLAB is not set

CONFIG_SLUB is not set
CONFIG_SLOB=y

CONFIG_NOHIGHMEM=y
CONFIG_HIGHMEM4G is not set
CONFIG_HIGHMEM64G is not set

900000
800000
700000

600000 \

=== (ata

400000 bss
300000 == full

200000

100000 ———% _/—?

OI I I T 1
3.18 3.19 4.0 41 42 43 44 45 46 47 48 4.9 4.10 Version

Bytes

2500000
2000000 k_*_‘_++_._ﬁ-—*—*=¢‘
1500000
@ == text
2z == data
1000000
bss
- =—u == total
500000

3.18 3119 40 41 42 43 44 45 46 47 48 49 4.10 version

» We reported the vmlinux file size, to reflect the size that the kernel would use in
RAM.

> However, the vmlinux file was not stripped in our experiments. You could get
smaller results.

» On the other hand, the kernel will make allocations at runtime too. Counting on
the stripped kernel size would be too optimistic.

Linux 4.10 booting on QEMU ARM VersatilePB
> zImage: 405472 bytes
> text: 972660
> data: 117292
> bss: 22312
> total: 1112264

Minimum RAM | could boot this kernel with: 4M (3M was too low). Not worse than
10 years back!

>

Stalled since Josh Triplett's patches were removed from the linux-next tree
See https://1lwn.net/Articles/679455

Patches still available on
https://git.kernel.org/cgit/linux/kernel/git/josh/linux.git/
Removing functionality through configuration settings may no longer be the way

to go, as the complexity of kernel configuration parameter is already difficult to
manage.

The future may be in automatic removal of unused features (system calls,
command line options, /proc contents, kernel command line parameters...)

Lack of volunteers with time to drive the mainlining effort anyway.

Follow the kernel developers discussion about this topic:
https://1lwn.net/Articles/608945/. That was in 2014!

https://lwn.net/Articles/679455
https://git.kernel.org/cgit/linux/kernel/git/josh/linux.git/
https://lwn.net/Articles/608945/

Patches proposed by Andi Kleen in 2012
» Such optimizations would allow performance improvements as well as some size
reduction by eliminating unused code (-6% on ARM, reported by Tim Bird).

» The last time the LTO patches were proposed, using LTO could create new issues
or make problems harder to investigate. Linus didn't trust the toolchains at that
time.

» See https://lwn.net/Articles/512548/

https://lwn.net/Articles/512548/

XIP: eXecution In Place
> Allows to keep the kernel text in flash (NOR flash required).

» Only workable solution for systems with very little RAM
» ARM is apparently the only platform supporting it

» Look for obj-vy in kernel Makefiles:
obj-y = fork.o exec_domain.o panic.o \

cpu.o exit.o softirqg.o resource.o \
sysctl.o sysctl_binary.o capability.o ptrace.o user.o \
signal.o sys.o kmod.o workqueue.o pid.o task_work.o \
extable.o params.o \
kthread.o sys_ni.o nsproxy.o \
notifier.o ksysfs.o cred.o reboot.o \
async.o range.o smpboot.o ucount.o

» What about allowing to compile Linux without ptrace support (14K on arm) or
without reboot (9K)?

» Another way is to look at the compile logs and check whether/why everything is
needed.

» Look for tinification opportunities, looking for the biggest symbols:
nm --size-sort vmlinux
» Look for size regressions with the Bloat-O-Meter:

> ./scripts/bloat-o-meter vmlinux-4.9 vmlinux-4.10
add/remove: 101/135 grow/shrink: 155/109 up/down: 19517/-19324 (193)

function old new delta
page_wait_table - 2048 +2048
sys_call_table - 1600 +1600
cpuhp_bp_states 980 1800 +820

http://11lvm.linuxfoundation.org/

» Using Clang to compile the Linux kernel also opens the door
to performance and size optimizations, possibibly even
better than what you can get with gcc LTO.

» Unfortunately, the project looks stalled since 2015.

» News: Bernhard Rosenkranzer from Linaro has updated the
patchset and should start pushing upstream soon.
Reference: https://android-
git.linaro.org/kernel/hikey-clang.git, branch
android-hikey-linaro-4.9-clang

http://llvm.linuxfoundation.org/
https://android-git.linaro.org/kernel/hikey-clang.git
https://android-git.linaro.org/kernel/hikey-clang.git

4896] bin
1060324]

shin

14]
14]
14]
14]

busybox

cat -> busybox
dmesg -> busybox
hush -> busybox
ls -> busybox
mkdir -= busybox
mount -> busybox
mv -> busybox

ps -= busyhox

rm -> busybox

sh -> busybox
umount -> busybox

ifconfig -> ../bin/busybox
init -> ../bin/busybox
modprobe -> ../bin/busybox
rmmod -> ../bin/busybox

cat -> toybox
dmesg -> toybox
ls -> toybox
mkdir -> toybox
mount -> toybox
mv -> toybox

rm -=> toybox

sh -> toybox
toybox

toysh -> toybox

umount -> toybox

ifconfig -> ../bin/toybox
init -> ../bin/toybox
modprobe -> ../bin/toybox

rmmod -> ../bin/toybox

./../bin/toybox

2 directories, 16 files

Compiled on ARM with gcc 5.4 (dynamically linked with glibc)

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.con

60 BusyBox vs Toybox - shell only

dmesg -> toybox
sh -= toybox

toybox
toysh -> toybox

Compiled on ARM with gcc 5.4 (dynamically linked with glibc)

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.con 27/1

» Toybox wins if your goal is to reduce size and have a tiny rootfs

» BusyBox wins in terms of configurability, and in terms of functionality for more
elaborate needs.

» Comments from Rob Landley: the Toybox shell is too experimental to be used at
the moment, and is meant to become a bash replacement. If you're looking for a
small shell, you may look at mksh (https://www.mirbsd.org/mksh.htm)

https://www.mirbsd.org/mksh.htm

Let's compile and strip BusyBox 1.26.2 statically and compare the size

» With gcc 6.3, armel, musl 1.1.16:
183348 bytes

» With gcc 6.3, armel, uclibc-ng 1.0.22 :
210620 bytes.

» With gcc 6.2, armel, glibc:
755088 bytes

Note: BusyBox is automatically compiled with -0s and stripped.

Let's compile and strip BusyBox 1.26.2 dynamically and compare the size

» With gcc 6.3, armel, musl 1.1.16:
92948 bytes

» With gcc 6.3, armel, uclibc-ng 1.0.22 :
92116 bytes.

> With gcc 6.2, armel, glibc:
100336 bytes

Let's compile and strip a hello.c program statically and compare the size

» With gcc 6.3, armel, musl 1.1.16:
7300 bytes

» With gcc 6.3, armel, uclibc-ng 1.0.22 :
67204 bytes.

> With gcc 6.2, armel, glibc:
492792 bytes

sstrip (http://www.muppetlabs.com/~breadbox/software/elfkickers.html)
removes ELF contents that are not needed for program execution.

» Expect to save only a few hundreds or thousands of bytes

» sstrip is architecture independent (unlike strip) and is trivial to compile
Example with the small static program we've just compiled:

» With gcc 6.3, armel, musl 1.1.16: 7300 to 6520 bytes (-780)

» With gcc 6.3, armel, uclibc-ng 1.0.22: 67204 bytes to 66144 bytes (-1060)

» With gcc 6.2, armel, glibc: 492792 to 491208 bytes (-1584)
With BusyBox statically compiled with the musl library:

» From 183012 to 182289 (-723)

http://www.muppetlabs.com/~breadbox/software/elfkickers.html

» diet libc (http://www.fefe.de/dietlibc/
> Latest release in 2013! Not supported by toolchain generators.
» Was meant to generate small static executables

» klibc (https://www.kernel.org/pub/linux/libs/klibc/)

> Latest release in 2014! Not supported by toolchain generators.
» Was meant to generate small static executables for use in initramfs filesystems.
> Need reviving?

http://www.fefe.de/dietlibc/
https://www.kernel.org/pub/linux/libs/klibc/

» You can use mklibs (git://anonscm.debian.org/d-i/mklibs, but that just
copies the libraries which are used for a given set of executables. Build systems
can already do that.

» Would need something that removes unused symbols from libraries. Is the Library
Optimizer from MontaVista

(https://sourceforge.net/projects/libraryopt/) still usable?

git://anonscm.debian.org/d-i/mklibs
https://sourceforge.net/projects/libraryopt/

» For very small systems, booting on an initramfs is the best solution. It allows to
boot earlier and faster too (no need for filesystem and storage drivers).

» A single static executable helps too (no libraries)
> For bigger sizes, compressing filesystems are useful:

» SquashFS for block storage
» JFFS2 for flash (UBI has too much overhead for small partitions)

» ZRAM (compressed block device in RAM)

» Though there apparently hasn't been recent mainlining efforts, the kernel size can
remain very small (405K compressed on ARM, running on a system with 4M of
RAM).

» Compilers: use clang or gcc LTO (not for the kernel yet)
> New C library worth using: mus/
» Worth giving Toybox a try too, when simple command line utilities are sufficient.

» Still significant room for improvement. Difficult to make things removable without
increasing the kernel parameter and testing complexity, though.

» Any recent achievements to report?
> Any other resources you are using?
» Volunteers to join the size effort?

» News from the LLVM Linux project?

» Community friendly hardware we could use for development efforts? Supporting
special hardware with tight requirements is a good reason for getting code
accepted.

» Home of the Linux tinification project https://tiny.wiki.kernel.org/

> ldeas ideas and projects which would be worth reviving
http://elinux.org/Kernel_Size_Reduction_Work

» Tim Bird - Advanced size optimization of the Linux kernel (2013)
http://events.linuxfoundation.org/sites/events/files/lcjpl13_bird.pdf

» Pieter Smith - Linux in a Lightbulb: How Far Are We on Tinification (2015)
http://www.elinux.org/images/6/67/Linux_In_a_Lightbulb-
Where_are_we_on_tinification-ELCE2015.pdf

» Vitaly Wool - Linux for Microcontrollers: From Marginal to Mainstream (2015)
http://www.elinux.org/images/9/90/Linux_for_Microcontrollers-
_From_Marginal_to_Mainstream.pdf

https://tiny.wiki.kernel.org/
http://elinux.org/Kernel_Size_Reduction_Work
http://events.linuxfoundation.org/sites/events/files/lcjp13_bird.pdf
http://www.elinux.org/images/6/67/Linux_In_a_Lightbulb-Where_are_we_on_tinification-ELCE2015.pdf
http://www.elinux.org/images/6/67/Linux_In_a_Lightbulb-Where_are_we_on_tinification-ELCE2015.pdf
http://www.elinux.org/images/9/90/Linux_for_Microcontrollers-_From_Marginal_to_Mainstream.pdf
http://www.elinux.org/images/9/90/Linux_for_Microcontrollers-_From_Marginal_to_Mainstream.pdf

> Tuesday - 4:20pm

Tutorial: building the Simplest Possible Linux System - Rob Landley
» Tuesday - 5:20pm

Optimizing C for Microcontrollers - Best Practices - Khem Raj
» Thursday - 3:30pm

GCC/Clang Optimizations for Embedded Linux - Khem Raj

Questions?

Michael Opdenacker

michael.opdenacker@free-electrons.com

Slides under CC-BY-SA 3.0

http://free-electrons.com/pub/conferences/2017/elc/opdenacker-embedded-1linux-size-reduction/

http://free-electrons.com/pub/conferences/2017/elc/opdenacker-embedded-linux-size-reduction/

» Bernhard Rosenkréanzer suggested to try the Bionic C library from Android in
standard Linux. It's not perfect but could be useful in some cases.

» Clang has a new -0z optimization option that goes further than -0s

» Rob Landley mentioned his 2013 patchset to address limitations in the initramfs
booting approach. See https://1kml.org/1kml/2013/7/9/501

https://lkml.org/lkml/2013/7/9/501

> In the search for a small community friendly board with very little RAM (no more
than 2-4 MB of RAM), it seems that the most popular architecture is STM32.

» Musl library:
» To build a Musl toolchain, in addition to Crosstool-ng, it is also possible to use the
musl-cross-make project (https://github.com/richfelker/musl-cross-make)
> Musl is used in the Alpine Linux distribution (https://www.alpinelinux.org/,
focusing on small size and security. You could use it if your system needs a
distribution.

https://github.com/richfelker/musl-cross-make
https://www.alpinelinux.org/

