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Debugging tools / methods for PM
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Disabling kernel features

• Disable CONFIG_PM
– If bug remains, complain to someone else!

• Disable unnecessary drivers
– Only enable minimal set like timers, console, I2C, etc., depends on arch 

which are needed

• Disable PM features
– Only enable a single PM feature at a time and attempt to reproduce the 

problem

• Pros:
– Good for isolating a PM related problem if don't have any kind of clue about 

what is wrong

• Cons:
– Rather slow and difficult to use
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Stress testing

• Scripts that do some PM related operations in a tight loop
– Example: suspend loop with a wakeup from suspend every 100ms

• Should be random enough so that the bug producing pattern is 
executed

• Pros:
– Can be very useful in reproducing some problems that take typically a long 

time to occur with normal use

• Cons:
– Difficult to figure out what operations to actually execute in the stress testing 

script
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Tracing (printk / low level UART)

• Populate enough debug printks to the code being examined

• If possible, can also dedicate a custom interface for debug traces

• Pros:
– Easy / quick to use

• Cons:
– Typically alters code execution time (especially if using serial port), and may 

hide the actual problem
– Not usable from very low level code (printk)
– Printk:s are cached and may not be printed out before a crash happens (e.g. 

during suspend)
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GPIO / LED trace

• Add control to some GPIO / LED signal from certain points in code
– Example: LED is turned on when CPU is running, disabled when idle

• If possible to use multiple signals, can provide a binary coded trace 
value from kernel

• Pros:
– Single GPIO / LED control typically does not consume so much time as to 

alter execution times drastically (vs. UART)
– Can even use multiple devices with LEDS, and if using stress testing script, 

can immediately see if some devices have crashed or not
– Useful in case debugging code areas where debugger / printk is not usable

• Cons:
– Most likely only a few available (what to trace?)
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Debugger

• Useful in developing new code, and sometimes can see where kernel 
has crashed

• With PM code, typically need breakpoints
– Static / dynamic
– Fake breakpoint (infinite loop in code, re-program PC after stopped)

• Real hackers don't use/need debugger though

• Pros:
– Well, debugger is always a debugger

• Cons:
– Communication with CPU is probably blocked during low power operating 

modes
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Buffered traces / statistics

• Trace information collected from kernel side into a ring buffer

• Dumped out with a console operation through e.g. debugfs

• Typical uses: cpuidle tracing, power state usage statistics

• Kernel tracepoints seem to be a good tool for this, and it is easy to add 
new tracepoints in case something is missing

• Pros:
– Minor impact to execution times (no slow HW components accessed)

• Cons:
– Only useful in debugging misbehavior (crash prevents later dump)
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Example: tracepoints with idle 1/2

• Execute following script in target device:

#!/bin/sh
trace-cmd reset
sleep 10
trace-cmd start -e power
sleep 10
trace-cmd stop
trace-cmd extract
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Example: tracepoints with idle 2/2

• Copy resulting trace.dat over to host and process it with kernelshark
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Exporting debug functionality to 
userspace

• Provide a testing API to userspace to read / write hardware registers 
directly (on memory mapped registers can use /dev/mem)

• Enhance existing debug interfaces by adding write functionality in addition 
to existing read-only APIs
– Example: regulator fw microvolt nodes

• Add completely new interfaces where nothing exists currently

• Pros:
– Having as much of the functionality available to userspace as possible makes 

it easy to write test scripts

– Can dynamically create new test cases

• Cons:
– Might not be possible to upstream these
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Kernel PM features
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Suspend

• Executed from command line (echo mem > /sys/power/state)

• Disables all drivers manually
– Disables also trace!

• Tools for debugging:
– Trace (limited)
– Gpios
– Debugger (with breakpoints)

• Tricks:
– Prevent low level PM entry so that hardware is mostly taken out from debug 

process, re-enable once SW works
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Cpuidle

• Bit complicated as can execute multiple different C states based on 
system status

• Tools for debugging:
– Traces (limited) / gpios / ring buffer
– Debugger can be used with breakpoints

• Debug information from userspace:
– /sys/devices/system/cpu/*/cpuidle/*

• Tricks:
– Export API to userspace to “force” a certain C state always
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Regulators

• Userspace API available at /sys/class/regulator

• Easy to check the status of regulator framework against hardware 
status by using multimeter etc.

• Tricks:
– Export write capability for microvolt nodes to userspace
– Export regulator enable / disable to userspace
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Clock framework

• Ongoing work within Linaro to get a common clock framework into the 
kernel

• Part of the code exists already but integration missing to most of the 
platforms

• Tools for debugging:
– Traces

– Register dumps vs. clock framework status

• Userspace interface:
–  /sys/kernel/debug/clk/*
– Provides info for clock rates, usecounts, flags etc.
– Easy to tweak to allow manual enable of clocks from userspace
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Cpufreq

• Pretty easy to debug, as typically does not block any kernel 
functionality, and has nice APIs readily available from userspace

• Can usually trace through everything
– May have a critical section that requires more complex debugging

• Debug information from userspace:
– /sys/devices/system/cpu/*/cpufreq/*
– /sys/class/regulator/*
– /sys/kernel/debug/clk/* if available

• Tricks:
– Select clock frequency manually with 'ondemand' governor by writing to 

'scaling_min/max_freq' nodes
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Devfreq

• Device specific DVFS, relatively similar to cpufreq

• Should also be possible to trace through everything

• Adds extra 'devfreq' directory under device sysfs node 
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Typical PM problems
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Bootloader madness insanity

• Everybody uses a different bootloader

• Lots of features inside the bootloaders, which typically leave hardware 
enabled after use => prevents PM

• Quite often it might not be evident that bootloader is causing PM 
problems

• First thing to do when someone complains to you about PM issues, ask 
them what bootloader they are using
– If not the same you have => its their problem



23

Device crash

• Device dies completely, either with or without a crash dump

• If with dump, just decipher the crash dump to figure out what happened

• If silent hang, try to pinpoint where the crash happens
– Disable CONFIG_PM
– Disable PM options one by one
– Disable drivers to get a 'minimal kernel'
– Add traces to code
– Add breakpoints to potential crash locations etc.
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Device malfunction

• Some driver starts misbehaving after a while

• Can take a long time to reproduce

• Maybe difficult to pinpoint the actual problem

• If you are lucky, might provide mysterious crash dumps related to the 
component in question

• Stress testing scripts might be useful

• Example problems:
– Device stops responding to serial console after a while, but the kernel / 

interrupts still work
– Memory corruption
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Increased power consumption (1/3)

• Power source good initial indicator
– e.g. battery dies too quickly compared to what it should be

• Check if cpuidle / suspend work properly and set the device to proper 
state
– Sysfs status for cpuidle
– timer_stats

– Regulator status
– Whatever else is exported to userspace from HW point of view

• Good if you have a working / non-working case where you can 
compare the system state
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Increased power consumption – hardware 
(2/3)

• Hardware problems usually force higher power use than planned
– May need to disable some power saving techniques

• e.g. some regulator must always be 'enabled'

– Some HW pulls are incorrectly designed and consume extra power

• Might be possible to reduce impact in some cases with software tweaks
– E.g. align external pull vs. SoC configurable pull config

• May need to re-design hardware
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Increased power consumption - userspace 
(3/3)

• Typical culprit for consuming too much power

• Some process is using too much resources for execution
– Prevents cpuidle completely (cpu load) or partially (timer usage)

• Check out 'top' or something similar for CPU load

• /proc/timer_stats is good for figuring out timers that are used too often



28

Some references

• Powertop
– Parses timer + process + interrupt info
– https://01.org/powertop/

• Powerdebug
– Parses regulator + clock framework + sensor data
– https://wiki.linaro.org/WorkingGroups/PowerManagement/Doc/PowerDebug

• Tracepoints
– Kernel source: include/trace/events/power.h

– Debugfs: /sys/kernel/debug/tracing/README
• Parsers: (target) trace-cmd => (host) kernelshark, pytimechart
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Thank you!
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