
1

Debugging embedded Linux
power management

Kernel developer point of view

ELCE, Barcelona, Nov. 7 2012

Tero Kristo <t-kristo@ti.com>

2

Contents / Introduction

• Debugging tools / methods for PM

• Kernel power management features

• Typical power management problems / bugs

3

Common PM architecture

Kernel

Userspace

Cpuidle gov. Cpufreq gov.

Clock FW Reg FW

Hardware

PM Core

Arch PM Reg DriversClk Drivers

Cpufreq driver

Devfreq gov.Cpufreq gov

Devfreq driverCpuidledriver

DriversDrivers
Drivers

4

Debugging tools / methods for PM

5

Disabling kernel features

• Disable CONFIG_PM
– If bug remains, complain to someone else!

• Disable unnecessary drivers
– Only enable minimal set like timers, console, I2C, etc., depends on arch

which are needed

• Disable PM features
– Only enable a single PM feature at a time and attempt to reproduce the

problem

• Pros:
– Good for isolating a PM related problem if don't have any kind of clue about

what is wrong

• Cons:
– Rather slow and difficult to use

6

Stress testing

• Scripts that do some PM related operations in a tight loop
– Example: suspend loop with a wakeup from suspend every 100ms

• Should be random enough so that the bug producing pattern is
executed

• Pros:
– Can be very useful in reproducing some problems that take typically a long

time to occur with normal use

• Cons:
– Difficult to figure out what operations to actually execute in the stress testing

script

7

Tracing (printk / low level UART)

• Populate enough debug printks to the code being examined

• If possible, can also dedicate a custom interface for debug traces

• Pros:
– Easy / quick to use

• Cons:
– Typically alters code execution time (especially if using serial port), and may

hide the actual problem
– Not usable from very low level code (printk)
– Printk:s are cached and may not be printed out before a crash happens (e.g.

during suspend)

8

GPIO / LED trace

• Add control to some GPIO / LED signal from certain points in code
– Example: LED is turned on when CPU is running, disabled when idle

• If possible to use multiple signals, can provide a binary coded trace
value from kernel

• Pros:
– Single GPIO / LED control typically does not consume so much time as to

alter execution times drastically (vs. UART)
– Can even use multiple devices with LEDS, and if using stress testing script,

can immediately see if some devices have crashed or not
– Useful in case debugging code areas where debugger / printk is not usable

• Cons:
– Most likely only a few available (what to trace?)

9

Debugger

• Useful in developing new code, and sometimes can see where kernel
has crashed

• With PM code, typically need breakpoints
– Static / dynamic
– Fake breakpoint (infinite loop in code, re-program PC after stopped)

• Real hackers don't use/need debugger though

• Pros:
– Well, debugger is always a debugger

• Cons:
– Communication with CPU is probably blocked during low power operating

modes

10

Buffered traces / statistics

• Trace information collected from kernel side into a ring buffer

• Dumped out with a console operation through e.g. debugfs

• Typical uses: cpuidle tracing, power state usage statistics

• Kernel tracepoints seem to be a good tool for this, and it is easy to add
new tracepoints in case something is missing

• Pros:
– Minor impact to execution times (no slow HW components accessed)

• Cons:
– Only useful in debugging misbehavior (crash prevents later dump)

11

Example: tracepoints with idle 1/2

• Execute following script in target device:

#!/bin/sh
trace-cmd reset
sleep 10
trace-cmd start -e power
sleep 10
trace-cmd stop
trace-cmd extract

12

Example: tracepoints with idle 2/2

• Copy resulting trace.dat over to host and process it with kernelshark

13

Exporting debug functionality to
userspace

• Provide a testing API to userspace to read / write hardware registers
directly (on memory mapped registers can use /dev/mem)

• Enhance existing debug interfaces by adding write functionality in addition
to existing read-only APIs
– Example: regulator fw microvolt nodes

• Add completely new interfaces where nothing exists currently

• Pros:
– Having as much of the functionality available to userspace as possible makes

it easy to write test scripts

– Can dynamically create new test cases

• Cons:
– Might not be possible to upstream these

14

Kernel PM features

15

Suspend

• Executed from command line (echo mem > /sys/power/state)

• Disables all drivers manually
– Disables also trace!

• Tools for debugging:
– Trace (limited)
– Gpios
– Debugger (with breakpoints)

• Tricks:
– Prevent low level PM entry so that hardware is mostly taken out from debug

process, re-enable once SW works

16

Cpuidle

• Bit complicated as can execute multiple different C states based on
system status

• Tools for debugging:
– Traces (limited) / gpios / ring buffer
– Debugger can be used with breakpoints

• Debug information from userspace:
– /sys/devices/system/cpu/*/cpuidle/*

• Tricks:
– Export API to userspace to “force” a certain C state always

17

Regulators

• Userspace API available at /sys/class/regulator

• Easy to check the status of regulator framework against hardware
status by using multimeter etc.

• Tricks:
– Export write capability for microvolt nodes to userspace
– Export regulator enable / disable to userspace

18

Clock framework

• Ongoing work within Linaro to get a common clock framework into the
kernel

• Part of the code exists already but integration missing to most of the
platforms

• Tools for debugging:
– Traces

– Register dumps vs. clock framework status

• Userspace interface:
– /sys/kernel/debug/clk/*
– Provides info for clock rates, usecounts, flags etc.
– Easy to tweak to allow manual enable of clocks from userspace

19

Cpufreq

• Pretty easy to debug, as typically does not block any kernel
functionality, and has nice APIs readily available from userspace

• Can usually trace through everything
– May have a critical section that requires more complex debugging

• Debug information from userspace:
– /sys/devices/system/cpu/*/cpufreq/*
– /sys/class/regulator/*
– /sys/kernel/debug/clk/* if available

• Tricks:
– Select clock frequency manually with 'ondemand' governor by writing to

'scaling_min/max_freq' nodes

20

Devfreq

• Device specific DVFS, relatively similar to cpufreq

• Should also be possible to trace through everything

• Adds extra 'devfreq' directory under device sysfs node

21

Typical PM problems

22

Bootloader madness insanity

• Everybody uses a different bootloader

• Lots of features inside the bootloaders, which typically leave hardware
enabled after use => prevents PM

• Quite often it might not be evident that bootloader is causing PM
problems

• First thing to do when someone complains to you about PM issues, ask
them what bootloader they are using
– If not the same you have => its their problem

23

Device crash

• Device dies completely, either with or without a crash dump

• If with dump, just decipher the crash dump to figure out what happened

• If silent hang, try to pinpoint where the crash happens
– Disable CONFIG_PM
– Disable PM options one by one
– Disable drivers to get a 'minimal kernel'
– Add traces to code
– Add breakpoints to potential crash locations etc.

24

Device malfunction

• Some driver starts misbehaving after a while

• Can take a long time to reproduce

• Maybe difficult to pinpoint the actual problem

• If you are lucky, might provide mysterious crash dumps related to the
component in question

• Stress testing scripts might be useful

• Example problems:
– Device stops responding to serial console after a while, but the kernel /

interrupts still work
– Memory corruption

25

Increased power consumption (1/3)

• Power source good initial indicator
– e.g. battery dies too quickly compared to what it should be

• Check if cpuidle / suspend work properly and set the device to proper
state
– Sysfs status for cpuidle
– timer_stats

– Regulator status
– Whatever else is exported to userspace from HW point of view

• Good if you have a working / non-working case where you can
compare the system state

26

Increased power consumption – hardware
(2/3)

• Hardware problems usually force higher power use than planned
– May need to disable some power saving techniques

• e.g. some regulator must always be 'enabled'

– Some HW pulls are incorrectly designed and consume extra power

• Might be possible to reduce impact in some cases with software tweaks
– E.g. align external pull vs. SoC configurable pull config

• May need to re-design hardware

27

Increased power consumption - userspace
(3/3)

• Typical culprit for consuming too much power

• Some process is using too much resources for execution
– Prevents cpuidle completely (cpu load) or partially (timer usage)

• Check out 'top' or something similar for CPU load

• /proc/timer_stats is good for figuring out timers that are used too often

28

Some references

• Powertop
– Parses timer + process + interrupt info
– https://01.org/powertop/

• Powerdebug
– Parses regulator + clock framework + sensor data
– https://wiki.linaro.org/WorkingGroups/PowerManagement/Doc/PowerDebug

• Tracepoints
– Kernel source: include/trace/events/power.h

– Debugfs: /sys/kernel/debug/tracing/README
• Parsers: (target) trace-cmd => (host) kernelshark, pytimechart

29

Thank you!

	Presentation title here – Note: Use this PowerPoint template if your presentation does not contain classified information.
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

