
Read-only rootfs
Theory and practice

Chris Simmonds

Embedded Linux Conference Europe 2016

Read-only rootfs 1 Copyright © 2011-2016, 2net Ltd



License

These slides are available under a Creative Commons Attribution-ShareAlike 3.0 license. You can read the full
text of the license here
http://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free to

• copy, distribute, display, and perform the work

• make derivative works

• make commercial use of the work

Under the following conditions

• Attribution: you must give the original author credit

• Share Alike: if you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one (i.e. include this page exactly as it is)

• For any reuse or distribution, you must make clear to others the license terms of this work

Read-only rootfs 2 Copyright © 2011-2016, 2net Ltd

http://creativecommons.org/licenses/by-sa/3.0/legalcode


About Chris Simmonds
• Consultant and trainer
• Author of Mastering Embedded Linux Programming
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and workshops

"Looking after the Inner Penguin" blog at http://2net.co.uk/

https://uk.linkedin.com/in/chrisdsimmonds/

https://google.com/+chrissimmonds

Read-only rootfs 3 Copyright © 2011-2016, 2net Ltd

http://2net.co.uk/
https://uk.linkedin.com/in/chrisdsimmonds/
https://google.com/+chrissimmonds


Overview

• Why you need a read-only rootfs

• Where it all goes wrong

• Putting it right

Read-only rootfs 4 Copyright © 2011-2016, 2net Ltd



Why you need a read-only rootfs

• Reduce wear on flash memory

• Eliminate system file corruption

• Avoid accidents

• Enable rootfs image to be updated (manually or OTA)

• Make reset to factory defaults much easier

Read-only rootfs 5 Copyright © 2011-2016, 2net Ltd



Where it all goes wrong

• You can’t just mount the rootfs ro

• Some files have to be created or updated at runtime

• Examples:

• Passwords

• Random seed

• SSH keys

• Network configuration

• wpa_supplicant parameters

Read-only rootfs 6 Copyright © 2011-2016, 2net Ltd



Categories of storage

Non-volatile:
flash memory

Volatile:
tmpfs

Rootfs:
read-only

User data
read-write

Temporary files:
read-write

Read-only rootfs 7 Copyright © 2011-2016, 2net Ltd



Becoming stateless

• The state (stuff that changes) is either

• Non-volatile: state that needs to be preserved

• Volatile: state that is only needed for the session

• To create a stateless rootfs:

• Move non-volatile state into an area of permanent storage reserved for
that purpose

• Move Volatile state to temporary storage (tmpfs RAM disk)

Read-only rootfs 8 Copyright © 2011-2016, 2net Ltd



The ideal of a stateless rootfs

• No state stored in rootfs

• Each component can revert to sensible default configuration if there is
no local configuration

Read-only rootfs 9 Copyright © 2011-2016, 2net Ltd



Factory reset

• Just wipe the non-volatile state

Read-only rootfs 10 Copyright © 2011-2016, 2net Ltd



System update

• Simply write a new rootfs image

• Two common mechanisms:

• A/B rootfs partitions : A is live while B is being updated, then swap

• Or, normal/recovery rootfs: boot into the recovery rootfs to update the
normal rootfs

• This is the subject of several other presentations this week

• One of which is mine: Software Update for IoT: The Current State of
Play, Wednesday 14:00

Read-only rootfs 11 Copyright © 2011-2016, 2net Ltd



Identifying state

• Which files are being written to?

• And by whom?

• Tools

• diskstats

• block_dump

Read-only rootfs 12 Copyright © 2011-2016, 2net Ltd



diskstats
• /proc/diskstats contains information about disk reads and writes

• Useful stuff is field 1: reads completed and field 5: writes completed

• Format is documented in Documentation/iostats.txt

• vmstat -d prints the same information but better

• Example
# cat /proc/diskstats
179 0 mmcblk0 2640 543 48969 207880 127 171 596 9990 0 26380 217830
179 1 mmcblk0p1 99 0 1169 6260 0 0 0 0 0 1790 6260
179 2 mmcblk0p2 2118 425 39212 160130 118 170 576 9860 0 23250 169950
179 3 mmcblk0p3 97 0 2088 15510 0 0 0 0 0 1860 15510
179 4 mmcblk0p4 2 0 10 150 0 0 0 0 0 150 150
179 5 mmcblk0p5 271 118 5426 23540 9 1 20 130 0 2830 23670

Number of reads = 2640; Number of writes = 127

Read-only rootfs 13 Copyright © 2011-2016, 2net Ltd



block_dump
• But, what is the cause of those writes? Which files?

• Turn on block system kernel logging using block_dump

• See Documentation/laptops/laptop-mode.txt in kernel source

• Example (rootfs is on /dev/vda):
# echo 1 > /proc/sys/vm/block_dump
# echo hello > world.txt
# dmesg
sh(234): dirtied inode 701 (.ash_history) on vda
sh(234): dirtied inode 701 (.ash_history) on vda
sh(234): dirtied inode 701 (.ash_history) on vda
sh(234): dirtied inode 694 (world.txt) on vda
sh(234): dirtied inode 694 (world.txt) on vda
jbd2/vda-8(78): WRITE block 802 on vda (2 sectors)
jbd2/vda-8(78): WRITE block 804 on vda (2 sectors)

Read-only rootfs 14 Copyright © 2011-2016, 2net Ltd



Logging block I/O from bootup
• Set block_dump in early boot script (may need to bump the size of the

kernel log buffer to capture everything)

• Then filter out the junk:
# dmesg | grep dirtied | grep "on vda" | sort
chown(150): dirtied inode 548 (passwd) on vda
dd(298): dirtied inode 716 (random-seed) on vda
dd(298): dirtied inode 716 (random-seed) on vda
dropbearkey(325): dirtied inode 717 (dropbear_rsa_host_key) on vda
dropbearkey(325): dirtied inode 717 (dropbear_rsa_host_key) on vda
gzip(197): dirtied inode 714 (udev-cache.tar.gz) on vda
gzip(197): dirtied inode 714 (udev-cache.tar.gz) on vda
gzip(197): dirtied inode 714 (udev-cache.tar.gz) on vda
login(347): dirtied inode 543 (motd) on vda
[...]

Only the file name is displayed, not full path name, but it’s enough

Read-only rootfs 15 Copyright © 2011-2016, 2net Ltd



Common problems

• A lot of stuff happens on first boot

• e.g. Dropbear writes SSH keys to /etc/dropbear, udev snapshot saved
to /etc/udev-cache.tar.gz

• Some of these things can be done at build time

• Others need be changed to put stuff in a non-volatile state partition

• System config, including network parameters

• Saving random-seed

• Log files

Read-only rootfs 16 Copyright © 2011-2016, 2net Ltd



Putting it right

• In reality, packages store state in various places

• Pragmatic solutions include:

• Adding symlinks from rootfs to non volatile storage: e.g. /etc to /data/etc

• Using unionfs or similar to overlay rootfs with non volatile storage

Read-only rootfs 17 Copyright © 2011-2016, 2net Ltd



Putting it right: first pass

• Create a new partition for non-volatile state

• For example /data (an idea borrowed from Android)

• Remount rootfs readonly

• Use tmpfs for volatile state (/run and /var/volatile)

/etc/fstab

/dev/root / auto defaults,ro 1 1
/dev/vdb /data ext4 defaults 0 0
tmpfs /run tmpfs mode=0755,nodev,nosuid,strictatime 0 0
tmpfs /var/volatile tmpfs defaults 0 0
[...]

Read-only rootfs 18 Copyright © 2011-2016, 2net Ltd



log files

• Many daemons write log files to /var/log

• Including syslogd

• Usually, such log files are unnecessary for embedded

• Solution: make log files part of the volatile state by mounting a tmpfs
on /var/log

Poky core-image-minimal does this already:

# ls -ld /var/log
lrwxrwxrwx 1 root root 12 Oct 6 14:11 /var/log -> volatile/log
# mount
tmpfs on /var/volatile type tmpfs (rw,relatime)

Read-only rootfs 19 Copyright © 2011-2016, 2net Ltd



random-seed

• Saving random-seed at shutdown is necessary when using
/dev/urandom

• Solution: make it part of non-volatile state by symlinking
/var/lib/urandom to /data/var/lib/urandom

• Or, modify the shell script that creates and restores random-seed

Read-only rootfs 20 Copyright © 2011-2016, 2net Ltd



ssh keys

• The Dropbear ssh daemon stores keys in /etc/dropbear or
/var/lib/dropbear

• Keys should be unique per device

• Solution: either move to non-volatile state by symlinking
/var/lib/dropbear to /data

• Or, generate and pre load keys when device is provisioned

Read-only rootfs 21 Copyright © 2011-2016, 2net Ltd



Doing less on first boot

• Build packages with sensible defaults so they work without config files

• Or, pre-load config files into the /data partition

• Generate per-device configuration at build-time rather than at first-boot

• Populate configuration files that are common for many packages (e.g.
passwd, group with the composite requirements of all

Read-only rootfs 22 Copyright © 2011-2016, 2net Ltd



What about Android/Brillo?

Android is a good example

• rootfs moved into /system, which is read only and stateless

• Non-volatile state in /data

• Has factory reset

• Has OTA update

Read-only rootfs 23 Copyright © 2011-2016, 2net Ltd



What about Yocto Project?

Current versions of Yocto Project have a partial solution

• Add to your config:
IMAGE_FEATURES = "read-only-rootfs"

• Sets ROOTFS_READ_ONLY=yes in /etc/default/rcS

• Mounts rootfs ro and /var/lib as tmpfs

• But, nowhere to store non volatile state

Read-only rootfs 24 Copyright © 2011-2016, 2net Ltd



Conclusion

• Read-only rootfs makes for better embedded systems

• Make rootfs stateless by moving state into non-volatile and volatile
filesystems

• diskstats and block_dump will help identify state

Read-only rootfs 25 Copyright © 2011-2016, 2net Ltd



• Questions?

Slides on Slide Share
http://www.slideshare.net/chrissimmonds/
readonly-rootfs-theory-and-practice
‘

Read-only rootfs 26 Copyright © 2011-2016, 2net Ltd

http://www.slideshare.net/chrissimmonds/readonly-rootfs-theory-and-practice
http://www.slideshare.net/chrissimmonds/readonly-rootfs-theory-and-practice


Containers

• Containerised operating systems (e.g CoreOS) are a popular way to
implement Internet/cloud services

• They have a similar problem:

• Removing state from containers makes deployment easier

• Consequently, they are leading the way on statelessness

• Containers may be a useful way to deploy embedded

• swupd from Clear Linux

• resoin.io

Read-only rootfs 27 Copyright © 2011-2016, 2net Ltd



Embedded != cloud service

• Use cases differ

• Cloud

• can assume high speed network to supply config (via LDAP, NFS,
DHCP, etc)

• Emphasis on run-time integration of different app images into a base
os

• Embedded

• Static app image (in a monolithic rootfs)

• Have to function stand-alone

Read-only rootfs 28 Copyright © 2011-2016, 2net Ltd


	Overview
	Why you need a read-only rootfs
	Identifying state
	Putting it right
	Generic solutions
	Conclusion

