
1
Copyright © 2011, 2net Limited

Outside the box
In the beginning

In the Beginning...

2
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Overview

● Genesis of a Linux project
● The four elements

● Tool chain; boot loader; kernel; user space

● Element 1: Tool chain
● Element 2: Boot loader

3
Copyright © 2011, 2net Limited

Outside the box
In the beginning

“I've just had this great idea...”

● “…our next product will run Linux”

● This workshop will take a look at
● Board bring-up
● Development environment
● Deployment

4
Copyright © 2011, 2net Limited

Outside the box
In the beginning

The four elements

Toolchain (air)

Boot loader (earth)

Kernel (fire)

User space (water)

5
Copyright © 2011, 2net Limited

Outside the box
In the beginning

First element: the toolchain

● You can't do anything until you can produce
code for your platform

● A tool chain consists of at least
● binutils: GNU assembler, linker, etc.
● gcc: GNU C compiler
● C library (libc): the interface to the operating system
● gdb: debugger

● Overall project website is
● www.gnu.org

6
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Types of toolchain

● Native: run compiler on target board
● If your target board is not fast enough or doesn't

have enough memory or storage, use an emulator
e.g. qemu

● Cross: compile on one machine, run on another
● Most common option

7
Copyright © 2011, 2net Limited

Outside the box
In the beginning

The C library

● Gcc is built along-side the C library
● Hence, the C library is part of the tool chain

● Main options are
● GNU glibc

– big but fully functional
● GNU eglibc

– glibc but more configurable; embedded-friendly
● uClibc

– small, lacking up-to-date threads library and other
POSIX functions

8
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Choosing a C library

Using uClinux?
Yes

No

uClibc

< 16 MiB
 storage?

Yes

No

uClibc

eglibc
available?

Yes

No

eglibc

Using uClinux?
Yes

No

uClibc

glibc

9
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Criteria for selecting a toolchain

● Good support for your processor
● e.g. for ARM A-8 core, armv4 compilers work OK but

armv7t works better

● Appropriate C library
● Up-to-date
● Good support (community or commercial)
● Other goodies, e.g.

● Cross-compiled libraries and programs
● Development tools for tracing, profiling, etc.

10
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Toolchain examples

Free, minimal

Free, binary

URL Architectures
ARM, MIPS, PPC, SH
Many!

Codesourcery G++ Lite www.codesourcery.com
Crosstool NG crosstool-ng.org

URL Architectures
ARM, PPC, AVR32, SH
ARM
PPC (ARM, MIPS)

Angstrom www.angstrom-distribution.org
Linaro www.linaro.org
Denx ELDK www.denx.de

11
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Toolchain examples

URL Architectures
MontaVista Linux www.mvista.com
Timesys LinuxLink linuxlink.timesys.com
Windriver Linux www.windriver.com
LynuxWorks BlueCat Linux www.lynuxworks.com
Sysgo ElinOS www.sysgo.com

Free, integrated build environment

Commercial

URL Architectures
ARM, PPC, MIPS
ARM, PPC, AVR32, SH
ARM, x86
ARM, x86

LTIB ARM, PPC

Buildroot www.buildroot.org
OpenEmbedded www.openembedded.org
Yocto www.yoctoproject.org
MeeGo meego.com

www.bitshrine.org

12
Copyright © 2011, 2net Limited

Outside the box
In the beginning

What about Android?

● “It's Linux, Jim, but not as we know it”
● Toolchain and debug tools for ARM (other architectures

may be available)
● Patched Linux kernel
● Minimal C library (Bionic)
● Dalvik virtual machine & Java run-time

● Source available via Android Open Source Project
● http://source.android.com

● Could be a general purpose embedded OS?
● beyond the scope of this course

13
Copyright © 2011, 2net Limited

Outside the box
In the beginning

“I got a toolchain with my board”

● This is often a trap!
● Most board vendors don't have in-depth

embedded Linux expertise
● Toolchain often out of date
● C library may not be the best choice
● Poor selection of other development libraries
● Do they have an update policy?

● Consider using a generic toolchain instead

14
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Installing a toolchain

● Usually everything is in a single directory tree
● typically in /usr/local or /opt

● In which you will find...
● cross-compiler and debugger binaries

– cross tools have a prefix, such as

arm-angstrom-linux-gnueabi-gcc
● header files and libraries for the target

● To use it, do something like:
PATH=/usr/local/some_tool_chain/bin:$PATH
arm-angstrom-linux-gnueabi-gcc my_prog.c -o my_prog

15
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Adding libraries

● A minimal tool chain only has libc
● Example: we have structured data and want to

use sqlite3. What to do?
● Worst case: cross compile it yourself

● libsqlite3 is not difficult; others are much worse

● You need
● Header files toolchain usr/include directory→
● Library .so and .a files toolchain usr/lib directory→
● Library .so files target usr/lib directory→

16
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Tip

● Choose a toolchain that comes with all (or
most) of the libraries you will need for the
project

17
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Support for debugging

● For remote debugging of the target make sure
your toolchain includes cross-development gdb
and cross-compiled gdbserver

● Ideally it should include debug symbols in all
the libraries

● Ideally it should include source code for the
libraries

18
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Other goodies

● Graphical IDE
● Eclipse with C/C++ Development Toolkit (CDT)

● Profilers
● Oprofile
● Memory patrol

● Tracers
● Linux Trace Toolkit

19
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Second element: bootloader

● Initialise the hardware
● Set up SDRAM controller
● Map memory
● Set processor mode and features

● Load a kernel
● Optional (but very useful)

● Load images via Ethernet, serial, SD card
● Erase and program flash memory
● Display splash screen

20
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Pre-boot loader

● Usually stored in flash memory
● Old days: NOR flash mapped to processor restart

vector so whole boot loader stored as single image
● These days: first stage boot loader is stored in first

page of NAND flash which is loaded by on-chip
microcode

● Sequence:
● Pre-boot loader main boot loader kernel→ →

21
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Loading the kernel

● Primary task of boot loader is to
● Generate a description of the hardware

– e.g. size and location of RAM, flash, ...
● Load a kernel image into memory
● (Optional) load a ramdisk image into memory
● Set the kernel command line (see later)
● Jump to kernel start vector, passing pointers to

– information about hardware
– kernel command line

22
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Bootloader-kernel ABI: ATAGS

ARM (and some others) the kernel is passed values in two registers

R1 = machine number
R2 = Pointer to ATAGS list

The ATAGS are a linked list of tagged values. For example

ATAG_CORE ; mandatory (pagesize, rootdev)
ATAG_MEM ; size, start physical addr
ATAG_CMDLINE ; Kernel cmdline
ATAG_NONE ; end of list

23
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Bootloader-kernel ABI: Device Tree

PPC (and others) use Flattened Device Tree (FDT)

/ device-tree
name = “device-tree”
model = “MyBoardName”
...

PowerPC,970@0
name = "PowerPC,970"
device_type = "cpu"
...memory@0

name = "memory"
device_type = "memory"
...

cpus
name = "cpus"
....

24
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Examples of boot loaders

● (Das) U-Boot
● PPC, ARM, MIPS, SH4
● http://www.denx.de/wiki/U-Boot/WebHome

● Redboot
● PPC, ARM, MIPS, SH4
● http://sources.redhat.com/redboot/

● For PC hardware use
● BIOS together with GRUB or LILO

25
Copyright © 2011, 2net Limited

Outside the box
In the beginning

U-Boot command line

Load a kernel image into memory from...
NAND flash

nand read 80100000 1000000 200000

SD card
mmc rescan 1
fatload mmc 1:1 80100000 uimage

TFTP server
setenv ipaddr 192.168.1.2
setenv serverip 192.168.1.1
tftp 80100000 uImage

Boot a kernel image in memory
bootm 80100000

26
Copyright © 2011, 2net Limited

Outside the box
In the beginning

U-Boot environment

U-Boot U-Boot
environment

Kernel image,
flash file systems, etc.

Typical NAND flash memory layout

U-Boot commands for environment

setenv ipaddr 192.168.1.101

printenv ipaddr

savvenv

27
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Automating boot: bootcmd

Set command to run when U-Boot starts

setenv bootcmd tftp 80100000 uImage\;bootm 80100000

Set delay before bootcmd is execcuted

setelv bootdelay 3

28
Copyright © 2011, 2net Limited

Outside the box
In the beginning

Summary

● Tool chain
● Cross or native
● Choice of C library: glibc, eglibc or uClibc
● Plus development libraries as needed

● Boot loader
● Initialises the hardware and loads a kernel
● Passes hardware description to kernel

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

