
Toolchain options in 2023:
What’s new in compilers and libcs?

Bernhard “bero” Rosenkränzer
bero@baylibre.com - bero@lindev.ch

Embedded Open Source Summit Europe 2023 1

http://bero@lindev.ch
http://bero@baylibre.com


Topics
• The current toolchain situation
• binutils
• compilers
• libcs
• C++ support
• Debuggers

ppaction://hlinksldjumpslide2
ppaction://hlinksldjumpslide5
ppaction://hlinksldjumpslide8
ppaction://hlinksldjumpslide20
ppaction://hlinksldjumpslide29
ppaction://hlinksldjumpslide33


The current situation
There is a well known, well documented (but slightly
complicated) way to build crosscompilers -- some
alternatives (some even good) have sprung up, but
are not yet as widely known.



The traditional way
• Build binutils
• Build a minimal gcc crosscompiler (C only, no
threads, ...)

• Build glibc
• Build gcc again with all needed features (including
libstdc++ if you want C++ support)

https://www.gnu.org/software/binutils/
https://gcc.gnu.org/
https://www.gnu.org/software/libc/


Advantages of staying with this
• By far the most widespread -- most 3rd party
libraries and applications have been tested in this
setup, and chances are people on IRC, mailing lists,
forums, ... have done this (and can likely help)

• Works well and optimizes well enough



binutils
• binutils is a collection of tools that deal with object
files -- you might not have used them directly, your
compiler uses them.

• There are 3 major implementations, and you're likely
using all of them already:
– GNU binutils (the "standard" implementation)
– elfutils (shipped with almost all distributions to get libelf)
– LLVM binutils (part of LLVM, built everywhere for Mesa
etc.)



binutils
• elfutils provides good implementations of the tools it
provides, but is lacking a linker -- you still need a linker,
e.g. from GNU binutils, LLVM or MOLD.

• Tools in GNU binutils and LLVM binutils are pretty much
interchangable and use mostly the same parameters

• Big advantage of LLVM tools: Crosscompilers built in.
"llvm-objdump --disassemble" on an ARM binary
works just fine on an x86 box (or vice versa) while you
need per-architecture tools in GNU binutils



binutils - LLVM binutils
• In LLVM 10, the lld linker (up until recently, the main
blocker for replacing binutils) has become good
enough and compatible enough to replace ld.bfd
and ld.gold for almost everything. And it's only
getting better (while gold is seeing little attention).

http://lld.llvm.org/


binutils – mold linker
• The mold linker is a new linker started by the original
developer of lld; it focuses on linking speed and
parallelism, and is much faster than traditional
linkers.
Both clang LTO and gcc LTO supported
Linker script support limited (and full support not
planned)
Works well for most applications/libraries

https://github.com/rui314/mold/releases


Compilers - gcc
• gcc has been the only serious compiler for a long
time, and it still does a great job.

• Supports C, C++, Objective-C, Fortran, Ada, Go, D
• Supports x86 (32 and 64), ARM (32 and 64),
PowerPC, MIPS, RISC-V, SPARC and many more
architectures

• Generally supports latest versions of languages
(C17, Most of C++20)

• Optimizes well



Alternative compilers: Clang
• There's another good compiler: clang (from LLVM).
• Supports C, C++, Objective-C, Fortran. Frontends for other
languages are available out-of tree, some languages (Rust,
Swift, Pony, ...) use LLVM

• Supports x86 (32 and 64), ARM (32 and 64), PowerPC,
MIPS, RISC-V, SPARC and many more architectures, most
notably AMD GPUs, NVIDIA PTX, WebAssembly, BPF

• Generally supports latest versions of languages (C17,
C++20)

• Optimizes well, many sanitizers

https://clang.llvm.org/


Alternative compilers: Clang
• Clang is a crosscompiler by design: You don't have
to build special per-target crosscompilers, clang can
target any supported platform.
Instead of having to build e.g. aarch64-linux-
gnu-gcc, you can use clang -target
aarch64-linux-gnu -- for any architecture.

• It's easier to get into Clang's code than into gcc's
code.



Alternative compilers: Clang
• Many targets - including some GPUs - supported
• Performance of clang-built binaries is similar to gcc-
built binaries. There are special cases where clang
performs better, and others where gcc performs
better. On average, their performance is similar with
clang (16) carrying a slight advantage over gcc (13)

• Clang tries to be a drop-in replacement for gcc,
implementing many gcc extensions

• Initial release was in 2012 (gcc: 1987)



Alternative compilers: Clang
• Apache 2.0 licensed (with both the advantages and
drawbacks compared to gcc's GPL)

• There's a good chance you'll need LLVM anyway (it
is used, among other things, by Mesa) -- but on the
other hand, depending on some other decisions, you
may need GCC anyway even if you opt for clang
(libstdc++, libgcc_s)



Alternative compilers: Clang
• Compile time can be significantly shorter with clang
especially when C++ is involved. Building LLVM with
gcc takes almost twice as long as building it with
clang.

• Modular code - most of LLVM/Clang functionality is
contained in libraries, making it easy to create new
programming languages, target new processors or
architectures like WebAssembly, or embed
functionality inside an IDE



Alternative compilers: Clang
• Fortunately, clang and gcc are binary compatible.
You can link a gcc-built binary to a clang-built library
and vice versa. In fact, you can even

gcc -O2 -o test1.o -c test1.c
clang -O2 -o test2.o -c test2.c
gcc [or clang] -o test test1.o test2.o

• If you want to mix compilers that way, you have to use gcc's
support libraries (libgcc rather than compiler-rt) - clang can
use gcc's, but not vice versa (at least without -nostdlib
trickery)



Alternative compilers: TinyCC
• TinyCC is what its name implies - probably just
about the smallest possible implementation of a full
C99 compiler -- the compiler's source is smaller than
4 MB, and it takes mere seconds to compile.
It has interesting uses (e.g. embedding inside an
application), but doesn't optimize as strongly as
clang or gcc.
It is also limited to C (no C++). It might be interesting
for small embedded devices.

https://repo.or.cz/w/tinycc.git


Compilers: BSPs
• Many BSPs (Board Support Packages) that come with
development boards contain a compiler.
This compiler is usually a fork of an outdated version of gcc or
clang (both of which, in the mean time, have typically added
much better support for the hardware in question).
Unless you're working on a very special device (not yet
supported by the upstream compilers), it's usually good advice
to ignore the BSP and build your own clang or gcc.

• Sometimes that means adding a few kernel patches to support
newer toolchains - those patches are usually already written and
relatively easy to find (try the kernel git repository).



Compilers: BSPs
• Special case for the Xtensa architecture and clang: Its support in
upstream LLVM is limited (supported by LLVM libraries but not
by clang, etc.)

• There is a vendor version that works well:
https://github.com/espressif/llvm-project

• And of course the version we built for libapu, which is essentially
the vendor branch rebased to LLVM 16.0.4
https://gitlab.baylibre.com/bero/llvm-for-libapu

• Hopefully both versions will go away with LLVM 17 merging
everything that is needed.

https://github.com/espressif/llvm-project
https://gitlab.baylibre.com/bero/llvm-for-libapu


Compilers: performance
Clang and gcc are similar in performance, across all
architectures I’ve looked at (aarch64, riscv64, x86_64)
– but there can be significant differences on some
code.



Compilers: performance
loop_unroll.cpp from Adobe C++ Benchmarks on
aarch64 operating on int32_t:
gcc: Total absolute time for int32_t do loop unrolling: 208.55 sec
clang: Total absolute time for int32_t for loop unrolling: 14.49 sec

Ha ha! gcc sucks!

https://stlab.adobe.com/performance/


Compilers: performance
But we don’t even have to use a different benchmark
suite to show the opposite...
simple_types_constant_folding.cpp on x86_64:
gcc: Total absolute time for float constant folding: 6.51 sec
Total absolute time for double constant folding: 7.13 sec
clang: Total absolute time for float constant folding: 8.33 sec
Total absolute time for double constant folding: 9.24 sec

What exactly sucks now?



Compilers: Conclusions
• gcc and clang are both good options. There is no clear
winner.

• Both have been used to compile full systems (including
the kernel). Most Linux distributions are built mostly with
gcc, some (OpenMandriva, Android) and the BSDs are
built mostly with clang. Some build-from-source
distributions offer both choices.
Yocto users can pull in the meta-clang layer to get
clang support.

http://openmandriva.org/


Compilers: Conclusions
• clang makes it easier (and, unless you're very familiar
with gcc's code base, faster) to add new architectures and
new languages, and is mostly built as a library. If you're
planning to add architectures and new language, or to
embed the compiler in your own projects, give clang a try.

• If you're using glibc, you need gcc to build it (for now,
clang support in progress). If you don't need any of the
extras offered by clang, you may want to go with gcc for
everything.



Compilers: Multiple compilers are good!
• Try building your code with multiple compilers. Not
only can it tell you which compiler works best for
your particular use, it will also help find bugs –
different compilers warn about different problems.
Up until recently, only clang would warn about this:
void doSomething(char a[16]) {

assert(sizeof(a) == 16);
}



libc: glibc
• For the system libc, glibc is the default option:

– most widespread
– most complete/most standards compliant
– very well tested
– most complete arch support (aarch64, arm, x86, x86_64, x32, RISC-V
64, alpha, C-Sky, hppa, ia64, m68k, microblaze, mips, powerpc, S/390,
sh, SPARC)

• But:
– code not very readable
– compiles only with gcc (this is starting to change, but clang support is still
experimental and doesn’t work out of the box)

– not very optimized for small systems
– rather big (roughly 4 MB for ld.so, libc, libm, libpthread)

https://www.gnu.org/software/libc/


libc: musl
• Complete, fast and relatively small (785 kB)
• Designed for C11+ and POSIX 2008+, with many glibc,
Linux and BSD extensions

• Supports aarch64, arm, x86, x86_64, x32, RISC-V 64,
m68k, microblaze, mips, mips64, mipsn32, or1k,
powerpc, powerpc64, s390x, sh

• Readable code
• Started 2011
• systemd pretends to need glibc, but happens to work with
musl (at least the core components) with minor tweaks

http://musl.libc.org/


libc: uClibc-ng
• Complete, fast and relatively small (1 MB in full config)
• Can be stripped down easily
• Focused on embedded systems
• Supports many processor types, including MMU-less:
Aarch64, Alpha, ARC, ARM, AVR32, Blackfin, CRIS, C-Sky,
C6X, FR-V, H8/300, HPPA, i386, IA64, LM32,
M68K/Coldfire, Metag, Microblaze, MIPS, MIPS64, NDS32,
NIOS2, OpenRISC, PowerPC, RISCV64, Sparc, Sparc64,
SuperH, Tile, X86_64 and XTENSA

https://uclibc-ng.org/


libc: klibc
• Written for the early bootup process, used in the initramfs of
Debian and some derivates

• Subset of libc functions, optimized for size over
performance

• More direct use of kernel structures avoids some type
conversion (e.g. between different ideas of "struct stat")

• Extremely small (75 kB)
• But not powerful enough as a real world libc - might be an
option for some embedded systems

• Uses GPL kernel headers, resulting license situation not
100% clear.

https://mirrors.edge.kernel.org/pub/linux/libs/klibc


libc: LLVM libc (not yet complete)
• In its early stages, but some code is there.
• Potentially interesting in the future because:

– Designed to work with sanitizers and fuzz testing from the
start

– Targeting C17 and up - not carrying around ancient cruft
– Design goal: "Use source based implementations as far
possible rather than assembly. Will try to fix the compiler
rather than use assembly language workarounds."

– The LLVM project has a track record of delivering good
toolchain options

https://llvm.org/docs/Proposals/LLVMLibC.html
https://github.com/llvm/llvm-project/tree/main/libc


libc: bionic (Android)
• Originally based on the BSD libc, bionic is the libc used in
Android.

• Currently supports ARM (32 and 64) and x86 (32 and 64)
• Rather well optimized because of vendor support for
Android

• Used to be unusable for a regular Linux system - lacking
e.g. SysV SHM needed for X11 - but has largely caught up

• Unfortunately, at the same time added some Android-isms
that make it harder to use outside of a full Android system
(APEX, system properties etc.), build system tied to the
Android tree

https://android.googlesource.com/platform/bionic


libc: bionic (Android)
• Potentially makes it possible to use closed drivers
written for Android in a regular Linux system without
having to go through hacks like libhybris

• May be interesting to build Linux/Android hybrid
systems

https://android.googlesource.com/platform/bionic
https://github.com/libhybris/libhybris


Other potential libc options
• newlib is limited to static linking - if you don't need dynamic linking, it may be

for you.
Most Zephyr builds today use newlib; but Zephyr is mostly transitioning to:

• picolibc is a fork of newlib and AVR libc. It frequently incorporates changes
from newer newlib. Main differences:
– New build system (meson)
– Removed non BSD-licensed code
– Handling of thread-local storage
– stdio from AVR libc
– Merged libc and libm
– C++ exceptions support
– Xtensa support

https://sourceware.org/newlib/
http://zephyrproject.org/
https://github.com/picolibc/picolibc


Other potential libc options
• dietlibc is optimized for small size and static linking -
but not very actively maintained, and on something
as low level as a libc, its GPL (not LGPL) license
may be a problem if your system will allow
building/installing/running custom code.

• BSD — Take the libc from your favorite BSD and
port it to Linux (certainly doable — see Bionic)

https://www.fefe.de/dietlibc/


libc: Conclusions
• There are many interesting options - for now:
• If you need maximum compatibility with other
systems, go with glibc.

• If you need a full fledged, but smaller and more
memory efficient libc, go with musl.

• If you need a subset of libc and want to strip out
unneeded components, try uClibc-ng.

• If you want to experiment with Android features on
regular Linux Bionic may be worth a try.



C++ support: libstdc++
• libstdc++ is part of gcc, used by almost all Linux
distributions including some that use clang as their
primary compiler (notable exception: Android)

• This is what almost everything is developed against
- the easiest option if you don't want to tweak code
to add missing #includes that happen to be
ignored by libstdc++.



C++ support: libc++
• libc++ is an optional part of LLVM/Clang.
• It's newer and smaller than libstdc++, carries less cruft to
support ancient code. Most benchmarks also show it
performing better.

• Problem: You can't mix libstdc++ and libc++ (for obvious
reasons, they provide the same standardized API and export
the same symbols). You can't e.g. compile Qt against libc++
and expect a binary built with Qt/libstdc++ (such as pretty
much any non-free software out there) to work.

• 3rd party applications (Chromium etc.) increasingly use libc++



C++ support: uClibc++
• uClibc++ is (was?) an attempt to write an STL
implementation to go along with uClibc - a
good idea (certainly you can strip out some
parts of the STL when building an embedded
system), but the last commit was in 2016.
Don’t use it unless you’re prepared to revive
the project.

https://github.com/uClibcxx/uClibcxx


C++ support: others
• Worth a mention because they are a fairly complete
implementation of the STL of their time: STLport and
Apache libstdcxx (last commit in both: 2008)

• Possibly worth a look because it is actively maintained and
getting support for new C++ standards: MSVC’s STL (has
been opened up under the Apache license, but has not yet
been ported to Linux and the project has no intention of
doing so — but there may be some interesting platform
independent code in there).

https://github.com/microsoft/STL


C++ support - conclusions
• If binary compatibility with other Linux distributions is
a concern, go with libstdc++.

• If you're using clang and you care about
performance and memory efficiency, try libc++.



Debuggers
• gdb has been the debugger to go to for a long time -
initially released in 1986, and kept up to date (latest
release: February 2023)

• More recently, lldb - a part of the LLVM project - has
come along. Initially released in 2003, it has become
a realistic replacement for gdb by now.

• Both tools do pretty much the same job, and both do
it well.

https://www.gnu.org/software/gdb/
http://lldb.llvm.org/


Debuggers: GDB and LLDB
• LLDB provides many command aliases for gdb compatibility.
• LLDB's native syntax tends to be cleaner (designed 20 years
later - less need to retrofit new features), but also more
verbose

• LLDB has the edge in C++ support, and can evaluate
expressions in the LLVM JIT

• Good news for remote debugger users: gdbserver and lldb-
server speak the same protocol. You don't have to force users
to use a specific debugger when deciding what (if any) debug
server/stubs you put into a BSP/distro



Questions? Feedback? Bags of cash? ;)
• If you have any of the above, email me at
bero@baylibre.com or bero@lindev.ch.

http://bero@lindev.ch
http://bero@baylibre.com

