
FPGA and Devicetree

Linux Plumbers’ Conference 2018
Alan Tull (Intel) /  Moritz Fischer (National Instruments)



Problem Statement 
that FPGA Manager 
addresses

● FPGAs are hardware that can be reconfigured at 
runtime

● There are little to no restrictions on what can be 
implemented bus-wise in an FPGA

● Users might want to reprogram either the full 
FPGA (full reconfiguration) or parts (partial 
reconfiguration) of the FPGA at any point during 
runtime

● When an FPGA is reprogrammed, a single FPGA 
image adds many interconnected devices to a 
bus

● FPGA Manager framework presents APIs on 
several levels to deal with the sequencing and 
dependencies for programming FPGAs under 
the control of the Linux Kernel



FPGA Manager 
components

● A FPGA manager deals at the lowest level with 
how to program an FPGA with a new piece of 
firmware (bitstream)

● A FPGA region represents part of (or an entire) 
FPGA that can be reprogrammed

● FPGA regions sometimes need to be isolated 
from surrounding logic while being 
reprogrammed. We model this using FPGA 
bridges

More info:
https://elinux.org/images/5/5b/FPGAs-under-Linux-
Alan-Tull-v1.00.pdf

https://www.kernel.org/doc/html/v4.19/driver-api/fp
ga/index.html

https://elinux.org/images/5/5b/FPGAs-under-Linux-Alan-Tull-v1.00.pdf
https://elinux.org/images/5/5b/FPGAs-under-Linux-Alan-Tull-v1.00.pdf
https://www.kernel.org/doc/html/v4.19/driver-api/fpga/index.html
https://www.kernel.org/doc/html/v4.19/driver-api/fpga/index.html


How does DT fit in 
there?

● Most of FPGA designs are fundamentally not 
discoverable (SPI, I2C, MMIO …)

● DT is made to describe non-discoverable 
hardware

● DT code largely assumes static devicetree
● DT overlays allow to work with runtime changes 

in the devicetree
● When FPGA manger was being developed  

(v4.4) DT overlays looked like a perfect fit for DT 
based FPGA systems

● Problem: Most (DT) code predates DT overlays
● Result: As of 4.19 FPGA Manager does not have 

a workable userspace interface for DT based 
systems



 DT Overlays for FPGA - The Original PlanTM

[...]
mgr0: fpga-manager{

compatible = “foo-mgr”;
[...]

};

fpga_bridge0: fpga-bridge {
compatible = “foo-bridge”;

};

fpga_region0: fpga-region {
compatible = “fpga-region”;
bridges = <&fpga_bridge0>;
fpga-mgr = <&mgr0>;
[...]

};

[...]

[1] More info on bindings:
Documentation/devicetree/bindings/fpga/fpga-region.txt

[...]
mgr0: fpga-manager{

compatible = “foo-mgr”;
[...]

};

fpga_bridge0: fpga-bridge {
compatible = “foo-bridge”;

};

fpga_region0: fpga-region {
compatible = “fpga-region”;
bridges = <&fpga_bridge0>;
fpga-mgr = <&mgr0>;

firmware-name = “mybitstream.bin”;

gpio9: gpio-controller {
compatible = “bar,gpio”;

};

uart7: uart {
compatible = “foo,uart”;
[...]

};
};

[...]

+Overlay

● The overlay targets the FPGA Region 
to be programmed

● Applying DT overlay will:
○ Specify an FPGA image for 

programming [1]
○ Specify information about the 

image type such as full vs 
partial, encrypted, compressed, 
...

○ Describe the HW added in the 
FPGA image



 DT Overlays for FPGA - The Original PlanTM

[...]
mgr0: fpga-manager{

compatible = “foo-manager”;
[...]

};

fpga_bridge0: fpga-bridge {
compatible = “foo-bridge”;

};

fpga_region0: fpga-region {
compatible = “fpga-region”;
bridges = <&fpga_bridge0>;
fpga-mgr = <&mgr0>;
[...]

};

[...]

[1] More info on bindings:
Documentation/devicetree/bindings/fpga/fpga-region.txt

[...]
mgr0: fpga-manager{

compatible = “foo-manager”;
[...]

};

fpga_bridge0: fpga-bridge {
compatible = “foo-bridge”;

};

fpga_region0: fpga-region {
compatible = “fpga-region”;
bridges = <&fpga_bridge0>;
fpga-mgr = <&mgr0>;

firmware-name = “mybitstream.bin”;

gpio9: gpio-controller {
compatible = “bar,gpio”;

};

uart7: uart {
compatible = “foo,uart”;
[...]

};
};

[...]

+Overlay

1. of_overlay_apply() calls 
of_overlay_notify(OF_OVERLAY_P
RE_APPLY)

2. of_fpga_region_notify_pre_apply() 
looks at overlay, parses 
firmware-name property and other 
properties that affect FPGA 
programming [1].

3. fpga_region_program_fpga()
4. If previous step succeeds, notifier 

returns success and overlay 
changeset gets applied to live-tree.  
Otherwise notifier returns error and 
overlay is rejected.



How does the DT 
overlay get into the 
kernel in the first 
place?

● Configfs interface proposed by Pantelis Antoniou
"OF: DT-Overlay configfs interface (v7)"

○ Generic Interface that allows application of DT overlays 
to any node from userland 

○ Geert Uytterhoeven somewhat unofficially maintains that 
in his tree [1]

○ Widely used, e.g. upstream Yocto kernel ships it by 
default

○ Discussion around why this is not a good idea [2], to 
summarize: A lot of things break if you apply to random 
nodes, we need a mechanism to lock down where we 
apply the overlays

● Bake it into your FPGA image at known location (i.e. 
make your FPGA design discoverable)

○ Block RAM in FPGA is expensive for common dtbo sizes
○ Doesn’t work for all FPGA designs, especially existing 

ones

References:
[1] 
https://git.kernel.org/pub/scm/linux/kernel/git/geert/renesas-drivers.git/log/?h=topic/overlays
[2] https://lkml.org/lkml/2017/10/18/609

https://git.kernel.org/pub/scm/linux/kernel/git/geert/renesas-drivers.git/log/?h=topic/overlays
https://lkml.org/lkml/2017/10/18/609


Ideas on how to 
lock down where we 
apply overlays

● Alan submitted a RFC 
[RFC 1/2] of: overlay: add whitelist [1]

○ Driver centric, i.e. driver declares it’s ok with overlays
○ Feedback mostly around implementation

■ Rob: Function naming
■ Rob/Frank: Implementation: Use flag vs actual list
■ Frank: Use DT connectors

● DT connectors RFC by Pantelis Antoniou
[RFC 0/3] Portable Device Tree Connector

○ Presentation on that at [2]
○ Problem statement by Frank [3] & [4]
○ At this point more or less conceptual?
○ Most discussions around actual implementation of 

connectors (tooling, dtc, …)

References:
[1] https://lkml.org/lkml/2017/12/7/1462
[2] https://elinux.org/images/d/d0/Panto.pdf
[3] https://lkml.org/lkml/2016/7/4/472
[4] https://lkml.org/lkml/2016/6/30/734

https://lkml.org/lkml/2017/12/7/1462
https://elinux.org/images/d/d0/Panto.pdf
https://lkml.org/lkml/2016/7/4/472
https://lkml.org/lkml/2016/6/30/734


Discussion:
Whitelisting for DT 
overlays

● Is this something we generally wanna look at?
● Can we salvage Alan’s RFC and make this work?
● Should the drivers declare themselves able to 

deal with overlays?



Discussion:
Connectors for 
FPGA

● Is this something we generally wanna look at?
● Recent discussion at Linaro Connect [1] suggests 

GPIO has at least nexus part figured out?
● Offline discussion between Alan & me seemed like 

the concept proposed for connectors could work 
somewhat

● Caveat: FPGAs mostly care about the MMIO / 
arbitrary hardware case which seems to benefit the 
least from connectorized approach

[1] https://connect.linaro.org/resources/yvr18/yvr18-404

 

https://connect.linaro.org/resources/yvr18/yvr18-404


Let’s keep the discussion going

● Offline after this talk / hallway
● linux-fpga (linux-fpga@vger.kernel.org) and 

devicetree (devicetree@vger.kernel.org) mailing 
lists

● Alan Tull (atull@kernel.org)
● Moritz Fischer (mdf@kernel.org)

 

mailto:linux-fpga@vger.kernel.org
mailto:devicetree@vger.kernel.org
mailto:atull@kernel.org
mailto:mdf@kernel.org

