FPGA and Devicetree

Linux Plumbers’ Conference 2018
Alan Tull (Intel) / Moritz Fischer (Naii

Problem Statement
that FPGA Manager
addresses

FPGAs are hardware that can be reconfigured at
runtime

There are little to no restrictions on what can be
implemented bus-wise in an FPGA

Users might want to reprogram either the full
FPGA (full reconfiguration) or parts (partial
reconfiguration) of the FPGA at any point during
runtime

When an FPGA is reprogrammed, a single FPGA
image adds many interconnected devices to a
bus

FPGA Manager framework presents APIs on
several levels to deal with the sequencing and
dependencies for programming FPGAs under
the control of the Linux Kernel

FPGA Manager e A FPGA manager deals at the lowest level with
components

how to program an FPGA with a new piece of
firmware (bitstream)

e A FPGA region represents part of (or an entire)
FPGA that can be reprogrammed

e FPGA regions sometimes need to be isolated
from surrounding logic while being
reprogrammed. We model this using FPGA
bridges

More info:

https://elinux.org/images/5/5b/FPGAs-under-Linux-
Alan-Tull-v1.00.pdf

https://www.kernel.org/doc/html/v4.19/driver-api/fp
ga/index.html

https://elinux.org/images/5/5b/FPGAs-under-Linux-Alan-Tull-v1.00.pdf
https://elinux.org/images/5/5b/FPGAs-under-Linux-Alan-Tull-v1.00.pdf
https://www.kernel.org/doc/html/v4.19/driver-api/fpga/index.html
https://www.kernel.org/doc/html/v4.19/driver-api/fpga/index.html

How does DT fit in
there?

Most of FPGA designs are fundamentally not
discoverable (SPI, 12C, MMIO ...)

DT is made to describe non-discoverable
hardware

DT code largely assumes static devicetree

DT overlays allow to work with runtime changes
in the devicetree

When FPGA manger was being developed

(v4.4) DT overlays looked like a perfect fit for DT
based FPGA systems

Problem: Most (DT) code predates DT overlays
Result: As of 4.19 FPGA Manager does not have
a workable userspace interface for DT based
systems

[...]

mgr0: fpga-manager{
compatible = “foo-mgr”;
[...]

}i

fpga bridge0: fpga-bridge {
compatible = “foo-bridge”;

b

fpga region0: fpga-region {

compatible = “fpga-region”;

bridges = <&fpga bridge(>;
fpga-mgr = <&mgr0>;
[...]

}i firmware-name = “mybitstream.bin”;
[...] ' gpio9: gpio-controller {

[...]

mgr0: fpga-manager{
compatible = “foo-mgr”;
[...]

}i

fpga bridge0: fpga-bridge {
compatible = “foo-bridge”;

b

fpga region0: fpga-region {
compatible = “fpga-region”;
bridges = <&fpga bridgel>;
fpga-mgr = <&mgr0>;

compatible = “bar,gpio”;

i

uart7: uart {
compatible = “foo,uart”;

[...]

DT Overlays for FPGA - The Original Plan™

The overlay targets the FPGA Region
to be programmed
Applying DT overlay will:

O

Specify an FPGA image for
programming [1]

Specify information about the
image type such as full vs
partial, encrypted, compressed,

Describe the HW added in the
FPGA image

[1] More info on bindings:
Documentation/devicetree/bindings/fpga/fpga-region.txt

[]

mgr0: fpga-manager{

compatible = “foo-manager”;

[...]
b

fpga bridge0: fpga-bridge {
compatible = “foo-bridge”;

b

fpga region0: fpga-region {

compatible = “fpga-region”;

bridges = <&fpga bridge(>;
fpga-mgr = <&mgr0>;
[...]

l]

mgr0: fpga-manager{

compatible = “foo-manager”;

[...]
b

fpga bridge0: fpga-bridge {
compatible = “foo-bridge”;

b

fpga region0: fpga-region {

compatible = “fpga-region”;

bridges = <&fpga bridgel>;
fpga-mgr = <&mgr0>;

firmware-name = “mybitstream.bin”;

bi "
[...] gpio9: gpio-controller {

compatible = “bar,gpio”;

i

uart7: uart {

compatible = “foo,uart”;

[...]

DT Overlays for FPGA - The Original Plan™

S

of_overlay_apply() calls
of_overlay_notify(OF_OVERLAY_P
RE_APPLY)

of _fpga_region_notify_pre_apply()
looks at overlay, parses
firmware-name property and other
properties that affect FPGA
programming [1].
fpga_region_program_fpga()

If previous step succeeds, notifier
returns success and overlay
changeset gets applied to live-tree.
Otherwise notifier returns error and
overlay is rejected.

[1] More info on bindings:
Documentation/devicetree/bindings/fpga/fpga-region.txt

How does the DT
overlay get into the
kernel in the first
place?

e Configfs interface proposed by Pantelis Antoniou

"OF: DT-Overlay configfs interface (v7)"

o Generic Interface that allows application of DT overlays
to any node from userland

o Geert Uytterhoeven somewhat unofficially maintains that
in his tree [1]

o Widely used, e.g. upstream Yocto kernel ships it by
default

o Discussion around why this is not a good idea [2], to
summarize: A lot of things break if you apply to random
nodes, we need a mechanism to lock down where we
apply the overlays

e Bake it into your FPGA image at known location (i.e.

make your FPGA design discoverable)
o Block RAM in FPGA is expensive for common dtbo sizes
o Doesn't work for all FPGA designs, especially existing
ones

References:
[1]

https://qit.kernel.org/pub/scm/linux/kernel/qit/geert/renesas-drivers.qgit/log/?h=topic/overlays

[2] https://Ikml.org/Ikml/2017/10/18/609

https://git.kernel.org/pub/scm/linux/kernel/git/geert/renesas-drivers.git/log/?h=topic/overlays
https://lkml.org/lkml/2017/10/18/609

e Alan submitted a RFC

[RFC 1/2] of: overlay: add whitelist [1]
o Driver centric, i.e. driver declares it's ok with overlays
o Feedback mostly around implementation

Ideas on how to
lOCk down Where We . EEE:/IErUannCI:'iCI)rrT]}glaeTnizr?tation' Use flag vs actual list
app]_y Overlays m Frank: Use DT connectors

e DT connectors RFC by Pantelis Antoniou
[RFC 0/3] Portable Device Tree Connector
o Presentation on that at [2]
o Problem statement by Frank [3] & [4]
o At this point more or less conceptual?
o Most discussions around actual implementation of
connectors (tooling, dtc, ...)

References:

[1] https://lkml.org/lkm|/2017/12/7/1462

[2] hitps://elinux.org/images/d/d0/Panto.pdf
[3] https://lkml.org/Ikml|/2016/7/4/472

[4] https://Ikml.org/lkm|/2016/6/30/734

https://lkml.org/lkml/2017/12/7/1462
https://elinux.org/images/d/d0/Panto.pdf
https://lkml.org/lkml/2016/7/4/472
https://lkml.org/lkml/2016/6/30/734

e Isthis something we generally wanna look at?
e (Can we salvage Alan’'s RFC and make this work?
Should the drivers declare themselves able to

Discussion:

White]-iSting for DT) deal with overlays?
overlays

e Isthis something we generally wanna look at?

D].SCUSS]-OH: e Recent discussion at Linaro Connect [1] suggests

GPIO has at least nexus part figured out?

COHHECtOl‘S for e Offline discussion between Alan & me seemed like

FPGA the concept proposed for connectors could work
somewhat

e Caveat: FPGAs mostly care about the MMIO /
arbitrary hardware case which seems to benefit the
least from connectorized approach

[1] https://connect.linaro.org/resources/yvr18/yvr18-404

https://connect.linaro.org/resources/yvr18/yvr18-404

Let’s keep the discussion going

e Offline after this talk / hallway

e linux-fpga (linux-fpga@vger.kernel.org) and
devicetree (devicetree@vger.kernel.org) mailing
lists

e Alan Tull (atull@kernel.orqg)

e Moritz Fischer (mdf@kernel.org)

mailto:linux-fpga@vger.kernel.org
mailto:devicetree@vger.kernel.org
mailto:atull@kernel.org
mailto:mdf@kernel.org

