
MUSE: MTD in Userspace
2023-28-06

Richard Weinberger

Hello

Richard Weinberger
› Co-founder of sigma star gmbh
› Linux kernel developer and maintainer
› Strong focus on Linux kernel, lowlevel

components, virtualization, security,
code audits

sigma star gmbh
› Software Development & Security

Consulting
› Main areas: Embedded Systems, Linux

Kernel & Security
› Contributions to Linux Kernel and

other OSS projects

2023-28-06 MUSE: MTD in Userspace

Agenda

› Motivation: Why MUSE?
› MUSE implementation: Why FUSE?
› MUSE details
› FUSE internals: How you can (ab)use it

2023-28-06 MUSE: MTD in Userspace

Motivation

› Testing components ontop of MTD can be unpleasant
› For me interesting components are UBI, UBIFS and JFFS2
› What we have so far:

› In-kernel: mtdram, block2mtd, nandsim
› Using virt: qemu, etc.

2023-28-06 MUSE: MTD in Userspace

In-kernel: mtdram

› Operates on a vmalloc()’ed memory region
› Implememts MTD interface (not a MTD subsystem such as NAND, NOR,

SPI-NOR)
› Type MTD_RAM
› Useful to simulate small MTDs such as parallel NOR chips
› Allows only one instance
› Good enough for basic JFFS2 testing
› No fault nor error injection support

2023-28-06 MUSE: MTD in Userspace

In-kernel: block2mtd

› Operates on a given block device
› Just like mtdram, implememts a MTD interface
› Type MTD_RAM
› Allows more instances
› Good enough for basic UBI and UBIFS testing (NOR mode)

› No wear leveling
› No fault nor error injection support

2023-28-06 MUSE: MTD in Userspace

In-kernel: nandsim

› Operates on kmalloc()’ed NAND pages
› Can swap pages to a file
› Mocks a parallel NAND chip
› Implements MTD NAND framework
› Good for UBI and UBIFS testing
› Support for: ECC, parts, error injection, delays
› Slow and error prone
› NAND geometry via NAND IDs
› Goal was finding errors in MTD NAND and UBI subsystems

› These days we find mostly bugs in nandsim itself ;-)

2023-28-06 MUSE: MTD in Userspace

Virt: QEMU (or any other)

› Can emulate flash devices
› Mostly for UEFI guest support
› For my use case too inflexible
› No fault nor error injection support

2023-28-06 MUSE: MTD in Userspace

My wishlist

› Add and remove MTD at runtime
› Support NOR and NAND style MTDs
› Support for various image formats

› With and without OOB
› Vendor specific

› User controllable error and fault injection support

2023-28-06 MUSE: MTD in Userspace

Idea

› Create a new MTD simulator
› Simulate NAND, NOR, SPI-NAND, SPI-NOR, etc..
› Keep kernel component simple and stupid
› Do all hard work in userspace

2023-28-06 MUSE: MTD in Userspace

First try: ad-hoc

› Create a new interface to control a MTD simulator from userspace
› Reinventing the wheel

2023-28-06 MUSE: MTD in Userspace

Second try: qemu/virtio

› Have a generic MTD in qemu
› Plus a generic MTD driver in kernel
› Let userspace (virt host) control the device
› Didn’t really fit my needs

2023-28-06 MUSE: MTD in Userspace

Third try: FUSE/CUSE

› Co-worker: “Can’t you mock MTD characteristics in userspace using CUSE?”
› CUSE: Character device in userspace: special operation mode of FUSE
› When you have read, write, ioctl, …, you can do a character device
› A bare character device is nice but still no real MTD
› Kernel MTD subsystem will not know it
› But I liked the idea

2023-28-06 MUSE: MTD in Userspace

Third try: FUSE/CUSE (cont’d)

› FUSE: Filesystem in userspace
› Filesystem ops (read, write, ioctl, stat, …) implemented in userspace
› Rather generic
› Many users: e.g: sshfs, ntfs-3g
› Enough to implement an MTD
› MTD has no zero copy and other fancy IO: makes things easy

2023-28-06 MUSE: MTD in Userspace

MUSE: MTD in userspace

› Add new FUSE operations to make MTD happy
› MUSE_READ, MUSE_WRITE, MUSE_ERASE, MUSE_ISBAD, MUSE_MARKBAD, MUSE_SYNC
› OOB, ECC support
› MTD lifetime was hard to get right

2023-28-06 MUSE: MTD in Userspace

MUSE: Features (in progress)

› Snapshots
› Custom image types (not just nanddump)
› Record/replay
› Fault injection
› Fuzzing

2023-28-06 MUSE: MTD in Userspace

MUSE: Status

› Kernel part almost done, less than 1000 LoC
› Still experimenting with userspace

› Playing with Rust

2023-28-06 MUSE: MTD in Userspace

MUSE for non-testing

› Real MTD drivers are possible too
› Only if flash device is fully controllable via userspace

› Hint: spidev and UIO help
› I do not recommend this except for PoC drivers

2023-28-06 MUSE: MTD in Userspace

More on FUSE

› Server/client architecture
› Userspace is the server!
› Kernel side implements a generic driver

› VFS in case of FUSE
› miscdevice in case of CUSE
› MTD for MUSE
› … your own

2023-28-06 MUSE: MTD in Userspace

More on FUSE (cont’d)

› Communication is request based
› Requests are made by the kernel
› Each request contains an operation
› Userspace reacts on it
› Reply contains a per-operation reply structure

2023-28-06 MUSE: MTD in Userspace

More on FUSE (cont’d)

› Usually each operation has an in and out sturcture
› Example: FUSE_WRITE
› struct fuse_write_in and struct fuse_write_out

struct fuse_write_in {
uint64_t fh;
uint64_t offset;
uint32_t size;
uint32_t write_flags;
uint64_t lock_owner;
uint32_t flags;
uint32_t padding;

};

struct fuse_write_out {
uint32_t size;
uint32_t padding;

};

2023-28-06 MUSE: MTD in Userspace

More on FUSE (cont’d)

› An answer to a request contains most of the time three io vectors:
1. struct fuse_out_header: Overall return code
2. Operation specific out message, e.g: struct fuse_write_out
3. Payload, a buffer with a length

› A request itself can also contain a buffer (think of write requests)

2023-28-06 MUSE: MTD in Userspace

How to create your own userspace driver framework

1. Define new FUSE operations plus in/out structures
› Ideally re-use existing ones!
› They are UAPI!
› include/uapi/linux/fuse.h

2. Implement a control character device (like /dev/fuse)
› Userspace will use it to install new devices
› In open() kernel will send INIT op

3. Implement a generic device driver
› All interesting operations will create a request and use the result

4. Add your operations to libfuse_lowevel (or handle requests directly)

2023-28-06 MUSE: MTD in Userspace

Example: MUSE_ISBAD

› Used by the kernel to test whether a block is bad
› Only userspace can know, so a request is needed

struct muse_isbad_in {
uint64_t addr;

};

struct muse_isbad_out {
uint32_t result;
uint32_t padding;

};

2023-28-06 MUSE: MTD in Userspace

Example: MUSE_ISBAD (cont’d)

› Kernel side of the generic MTD driver
static int muse_mtd_isbad(struct mtd_info *mtd, loff_t addr)
{
[...]

inarg.addr = addr;

args.opcode = MUSE_ISBAD;
args.nodeid = FUSE_ROOT_ID;
args.in_numargs = 1;
args.in_args[0].size = sizeof(inarg);
args.in_args[0].value = &inarg;
args.out_numargs = 1;
args.out_args[0].size = sizeof(outarg);
args.out_args[0].value = &outarg;

ret = fuse_simple_request(fm, &args);
[..]
}

2023-28-06 MUSE: MTD in Userspace

Example: MUSE_ISBAD (cont’d)

› libfuse_lowlevel side:
void do_muse_isbad(fuse_req_t req, fuse_ino_t nodeid, const void *inarg)
{

struct muse_isbad_in *arg = (struct muse_isbad_in *)inarg;

(void)nodeid;

if (req->se->op.muse_block_isbad)
req->se->op.muse_block_isbad(req, arg->addr);

else
fuse_reply_err(req, ENOSYS);

}

2023-28-06 MUSE: MTD in Userspace

Example: MUSE_ISBAD (cont’d)

› Application side:
void my_mtd_isbad(fuse_req_t req, loff_t addr)
{

int isbad = rand() & 1;

muse_send_block_isbad_reply(req, 0, isbad);
}

2023-28-06 MUSE: MTD in Userspace

Example: MUSE_ISBAD (cont’d)

› libfuse_lowlevel side:
int muse_send_block_isbad_reply(fuse_req_t req, int error, int isbad)
{

struct iovec iov[2];
struct muse_isbad_out out = {

.result = isbad,
};
int ret;

iov[1].iov_base = (void *)&out;
iov[1].iov_len = sizeof(out);

ret = fuse_send_reply_iov_nofree(req, error, iov, 2);
fuse_free_req(req);

return ret;
}

2023-28-06 MUSE: MTD in Userspace

Summary

› FUSE offers a nice and powerful framework
› You can do much more than filesystems in userspace
› Non-complex devices can be emulated with reasonable effort
› libfuse (and libfuse_lowlevel) offer most building blocks

› Many helpers to create and process requests
› Many examples and hints

› First MUSE PoC was ready within a day

2023-28-06 MUSE: MTD in Userspace

FIN

Thank you!
Questions, Comments?

Richard Weinberger
richard@sigma-star.at

2023-28-06 MUSE: MTD in Userspace

