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Hello!

Hello, I’m Jacopo

● Embedded camera engineer @ Ideas On Board Oy

● Video4Linux2
● libcamera 



Camera sensor drivers compliance

Software compliance

 
What we are not talking about today
   

- license compliance
- law compliance (GDPR...)
- process compliance
- standard compliance



Camera sensor drivers compliance

API compliance

An API specification is a formal definition of an interface between 
software components
   

- comparable to a standard

- can be expressed:
- in documentation format
- in formal language description
- .. 



Camera sensor drivers compliance

Testing compliance

 
compliance validation
   

- static code analysis

  - code auditing
  - linters
  - some AI-buzzword



Camera sensor drivers compliance

Testing compliance

 
compliance validation
   

- run time validation

  - unit-testing
- fuzzying
- correctness checks



Camera sensor drivers compliance

v4l2-compliance

 
compliance validation
   

- run time validation: v4l2-compliance

- Video4Linux2 utils suite (v4l-utils)

- tests for:
- the driver supported operations
- unit tests/fuzzer the implementation to verify correctness



Camera sensor drivers compliance

v4l2-compliance

 
compliance validation
   

- run time validation: v4l2-compliance

- is API compliance enough to guarantee interoperability ?



libcamera: a standard consumer of the V4L2 API



Cameras got complex (a long time ago..)
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… and applications had to be platform-specific
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libcamera abstracts away platform details



… but what about sensors ? 



libcamera as the standard V4L2 API consumer

 
A single consumer for multiple sensor driver implementations
   

what could possibly go wrong ?



libcamera as the standard V4L2 API consumer

 
A single consumer for multiple sensor driver implementations
   

- focus is on RAW sensor with a Bayer patter color filter array

- this presentation aims to share the pain we experienced while
        consuming the several different interpretation of the V4L2 APIs

- it aims to provide sensor driver developers tips to avoid the most
        common pitfalls



libcamera as the standard V4L2 API consumer

Basic feature set

- exposure/gain control
- flips control
- rotation

      - analog crop rectangle
- blankings controls



Exposure/gain handling

libcamera needs to control the sensor exposure and gain:

- computed by the AEGC algorithm (auto mode)
- specified by the user (manual mode)

Exposure time is expressed as a duration (micro-seconds)

Gain is expressed as a multiplier applied to all color channels



Exposure/gain handling

Exposure

- controlled through V4L2_CID_EXPOSURE

- typically expressed as a number of lines

- the V4L2 specification does not specify a unit for the control
- some drivers use lines
- some other uses fraction of lines
- they’re all technically compliant to the spec
- but impossible to interoperate generically



Exposure/gain handling

Analogue Gain

- controlled through V4L2_CID_ANALOGUE_GAIN

- (but some sensor drivers use V4L2_CID_GAIN!)

- the control unit is device specific
- gain code: it’s actually the register value!

- usually poorly documented



Exposure/gain handling

libcamera
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Exposure/gain handling

Tips for driver implementers:

- Use lines as V4L2_CID_EXPOSURE unit
- it’s unlikely you need to control sub-line duration exposure times

- Use the device gain code as V4L2_CID_ANALOGUE_GAIN
- and provide a CameraSensorHelper implementation in libcamera

- Whenever possible split digital and analogue gain handling
- IOW please don’t use V4L2_CID_GAIN for RAW sensors



Vertical and horizontal flips

V/H_FLIP

- Control the pixel readout order
- horizontal mirroring
- vertical flip
- 180 degrees rotation

- Considered to be “simple” controls
- but they have subtle implications for raw sensors

- they change the image format without userspace noticing it
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Vertical and horizontal flips

V/H_FLIP

- Control the pixel readout order
- horizontal mirroring
- vertical flip
- 180 degrees rotation

- Considered to be “simple” controls
- but they have subtle implications for raw sensors

- they change the image format without userspace noticing it



Vertical and horizontal flips



Vertical and horizontal flips



Vertical and horizontal flips



Vertical and horizontal flips



Vertical and horizontal flips

V/H_FLIP

- V4L2 provides a control flag to signal this to userspace



Vertical and horizontal flips

V/H_FLIP

- V4L2 provides a control flag to signal this to userspace

- only 6 drivers in mainline supports it...

$ git grep V4L2_CTRL_FLAG_MODIFY_LAYOUT drivers/media/i2c/ | cut -f 1 | uniq | wc -l
   6

 



Camera sensor rotation

Rotation

- Expresses the camera device mounting rotation

- Device tree property rotation
- video-interface-devices.yaml

- V4L2_CID_CAMERA_SENSOR_ROTATION

- upstreamed in 2021
- it has caused unexpected issues...



Camera sensor rotation

Rotation

- most drivers are programmed through register sequences

- those register sequences embeds v/h flips as they assume the
        sensor is mounted upside down to compensate for lens the
        inversion effect

- some drivers got confused by the default enabled flips

- some other tried to compensate for the mounting rotation by
        applying flips without the user noticing



Camera sensor rotation

Rotation

- some drivers got confused by the default enabled flips



Camera sensor rotation

Rotation

- some other tried to compensate for the mounting rotation by
        applying flips without the user noticing



Camera sensor rotation

Rotation

- none of the driver implementations was technically wrong
- they complied with the API specification..

- .. but their behavior was not predictable



Camera sensor rotation

Tips for drivers implementer

- Always register V4L2_CID_CAMERA_SENSOR_ROTATION
        with the the value associated with the rotation DT property

- If your driver programming sequences enable flips by default,
  register V4L2_CID_V/HFLIP with default value of 1

- Do not auto-compensate for rotation by silently enabling flips, let 
  userspace deal with it!



Selection targets

libcamera is requesting drivers to support a few selection targets

- TGT_NATIVE_SIZE: report the full pixel array size (readable
  and not readable pixels)

- TGT_CROP_BOUNDS: report the readable pixel size (valid
  and not valid pixels)

- TGT_CROP_DEFAULT: the default analog crop

- TGT_CROP: the analog crop rectangle



Static selection targets



Selection targets: analog crop

TGT_CROP: the analog crop rectangle

- the portion of the pixel array which is read out to produce the
        output frame

- depends on the current configuration: not a static target

- defines the image field of view

- impacts the sensor frame rate



Selection targets: analog crop

Same output resolution, different analog crop rectangle



Selection targets: analog crop

TGT_CROP: the analog crop rectangle

- so far libcamera requires targets to be readable

- we’ll soon require TGT_CROP to be writable as well

- currently implemented by a few drivers only

- allows to dynamically change the field of view



Blankings controls

 - Blankings allow to control the sensor’s frame rate

- By enlarging or shrinking the “blank” (or inactive) time between
        valid image data you control the actual duration of a frame

- Horizontal blanking (line duration) is usually fixed
- Vertical blanking should be controllable 

frame_duration = (width + hblank) * (height + vblank) / pixel_rate



Blankings controls

 - The total frame size depends on the visible sizes as well as on the 
   blankings size

- What happens when a new mode is applied to the sensor ?

- some drivers resets blankings to default
- some drivers adjust blankings only if they exceed limits



Blankings controls

You might have seen in a few places already



Blankings controls

 - VBLANK limits EXPOSURE

- if you need to set both of them

1) Set VBLANK → driver updates EXPOSURE
2) Set EXPOSURE

- and you have to be careful about the order of operations

- [PATCH 0/2] media: uapi: Add V4L2_CID_VTOTAL control
  from Benjamin Bara currently in discussion



sub-sampling

 - The same output resolution can be obtain in different ways



sub-sampling

There currently is no API to know if a mode is binned or cropped

- So drivers had to find their own ways to express that



Conclusions

Writing applications that works generically with multiple sensor drivers 
is hard

● Abstracting away driver and device detail require a lot of effort

● Drivers might get creative when the API doesn’t help them



Conclusions

A standard library that abstracts away details simplifies applications 
development

● API compliance is not enough to guarantee interoperability
● API might be under-specified
● Implementation details cannot be automatically validated

● Requires a lot of review effort
● Gets easier if a reference implementation defines the expected

behavior



Conclusions

A standard consumer of the kernel interfaces is the only way to validate 
the implementation and design of the kernel abstractions

● For a long time kernel APIs have been implemented but not 
exercised consistently by userspace

● A reference userspace implementation serves to validate design 
choices made in kernel space

● Increase consistency and completeness of kernel drivers



? !



? !By the way, we are hiring
jobs@ideasonboard.com
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