
 _
+-/ \-+
| (o) |
+-----+

Camera sensor
compliance

EOSS 2023

Jacopo Mondi
jacopo.mondi@ideasonboard.com

Hello!

Hello, I’m Jacopo

● Embedded camera engineer @ Ideas On Board Oy

● Video4Linux2
● libcamera

Camera sensor drivers compliance

Software compliance

What we are not talking about today

- license compliance
- law compliance (GDPR...)
- process compliance
- standard compliance

Camera sensor drivers compliance

API compliance

An API specification is a formal definition of an interface between
software components

- comparable to a standard

- can be expressed:
- in documentation format
- in formal language description
- ..

Camera sensor drivers compliance

Testing compliance

compliance validation

- static code analysis

 - code auditing
 - linters
 - some AI-buzzword

Camera sensor drivers compliance

Testing compliance

compliance validation

- run time validation

 - unit-testing
- fuzzying
- correctness checks

Camera sensor drivers compliance

v4l2-compliance

compliance validation

- run time validation: v4l2-compliance

- Video4Linux2 utils suite (v4l-utils)

- tests for:
- the driver supported operations
- unit tests/fuzzer the implementation to verify correctness

Camera sensor drivers compliance

v4l2-compliance

compliance validation

- run time validation: v4l2-compliance

- is API compliance enough to guarantee interoperability ?

libcamera: a standard consumer of the V4L2 API

Cameras got complex (a long time ago..)

YUV sensor

0

CSI-2

1

0

Scaler

1

0

Capture
/dev/video0

0

C s
a e
m n
e s
r o
a r

S i
o n
C t
 e
c r
a f
m a
e c
a e
a

A
P
I

vm6558
/dev/v4l-subdev8

0

CCP2
/dev/v4l-subdev0

1

0

CCDC output
/dev/video4

0

CCDC
/dev/v4l-subdev2

1

0

2

CSI2a output
/dev/video3

0

AEWB
/dev/v4l-subdev5

0

CCP2 input
/dev/video2

0

jt8ev1 2-0037
/dev/v4l-subdev9

0

CSI2a
/dev/v4l-subdev1

1

0

as3645a 2-0030
/dev/v4l-subdev10

0

resizer
/dev/v4l-subdev4

1

0
preview

/dev/v4l-subdev3

0

1

resizer input
/dev/video7

0

Preview input
/dev/video5

0

OMAP3 Camera in Nokia N900 - 2009Simple camera

Camera
ApplicationCamera

Application

… and applications had to be platform-specific

V
4
L
2

Camera
Application

s
u
b
d
e
v

M
C

Platform A

Platform B

Platform C

libcamera abstracts away platform details

… but what about sensors ?

libcamera as the standard V4L2 API consumer

A single consumer for multiple sensor driver implementations

what could possibly go wrong ?

libcamera as the standard V4L2 API consumer

A single consumer for multiple sensor driver implementations

- focus is on RAW sensor with a Bayer patter color filter array

- this presentation aims to share the pain we experienced while
 consuming the several different interpretation of the V4L2 APIs

- it aims to provide sensor driver developers tips to avoid the most
 common pitfalls

libcamera as the standard V4L2 API consumer

Basic feature set

- exposure/gain control
- flips control
- rotation

 - analog crop rectangle
- blankings controls

Exposure/gain handling

libcamera needs to control the sensor exposure and gain:

- computed by the AEGC algorithm (auto mode)
- specified by the user (manual mode)

Exposure time is expressed as a duration (micro-seconds)

Gain is expressed as a multiplier applied to all color channels

Exposure/gain handling

Exposure

- controlled through V4L2_CID_EXPOSURE

- typically expressed as a number of lines

- the V4L2 specification does not specify a unit for the control
- some drivers use lines
- some other uses fraction of lines
- they’re all technically compliant to the spec
- but impossible to interoperate generically

Exposure/gain handling

Analogue Gain

- controlled through V4L2_CID_ANALOGUE_GAIN

- (but some sensor drivers use V4L2_CID_GAIN!)

- the control unit is device specific
- gain code: it’s actually the register value!

- usually poorly documented

Exposure/gain handling

libcamera
 (IPA)

AEGC

Application
"manual"

Exposure (usec)

Exposure (lines)

Analogue Gain Value

Gain Code

"auto"

Camera Sensor Helpers

Gain Code Gain Code Gain Code

/ lineDuration
ov.... imx... ar05...

Exposure/gain handling

Tips for driver implementers:

- Use lines as V4L2_CID_EXPOSURE unit
- it’s unlikely you need to control sub-line duration exposure times

- Use the device gain code as V4L2_CID_ANALOGUE_GAIN
- and provide a CameraSensorHelper implementation in libcamera

- Whenever possible split digital and analogue gain handling
- IOW please don’t use V4L2_CID_GAIN for RAW sensors

Vertical and horizontal flips

V/H_FLIP

- Control the pixel readout order
- horizontal mirroring
- vertical flip
- 180 degrees rotation

- Considered to be “simple” controls
- but they have subtle implications for raw sensors

- they change the image format without userspace noticing it

Vertical and horizontal flips

V/H_FLIP

- Control the pixel readout order
- horizontal mirroring
- vertical flip
- 180 degrees rotation

- Considered to be “simple” controls
- but they have subtle implications for raw sensors

Vertical and horizontal flips

V/H_FLIP

- Control the pixel readout order
- horizontal mirroring
- vertical flip
- 180 degrees rotation

- Considered to be “simple” controls
- but they have subtle implications for raw sensors

- they change the image format without userspace noticing it

Vertical and horizontal flips

Vertical and horizontal flips

Vertical and horizontal flips

Vertical and horizontal flips

Vertical and horizontal flips

V/H_FLIP

- V4L2 provides a control flag to signal this to userspace

Vertical and horizontal flips

V/H_FLIP

- V4L2 provides a control flag to signal this to userspace

- only 6 drivers in mainline supports it...

$ git grep V4L2_CTRL_FLAG_MODIFY_LAYOUT drivers/media/i2c/ | cut -f 1 | uniq | wc -l
 6

Camera sensor rotation

Rotation

- Expresses the camera device mounting rotation

- Device tree property rotation
- video-interface-devices.yaml

- V4L2_CID_CAMERA_SENSOR_ROTATION

- upstreamed in 2021
- it has caused unexpected issues...

Camera sensor rotation

Rotation

- most drivers are programmed through register sequences

- those register sequences embeds v/h flips as they assume the
 sensor is mounted upside down to compensate for lens the
 inversion effect

- some drivers got confused by the default enabled flips

- some other tried to compensate for the mounting rotation by
 applying flips without the user noticing

Camera sensor rotation

Rotation

- some drivers got confused by the default enabled flips

Camera sensor rotation

Rotation

- some other tried to compensate for the mounting rotation by
 applying flips without the user noticing

Camera sensor rotation

Rotation

- none of the driver implementations was technically wrong
- they complied with the API specification..

- .. but their behavior was not predictable

Camera sensor rotation

Tips for drivers implementer

- Always register V4L2_CID_CAMERA_SENSOR_ROTATION
 with the the value associated with the rotation DT property

- If your driver programming sequences enable flips by default,
 register V4L2_CID_V/HFLIP with default value of 1

- Do not auto-compensate for rotation by silently enabling flips, let
 userspace deal with it!

Selection targets

libcamera is requesting drivers to support a few selection targets

- TGT_NATIVE_SIZE: report the full pixel array size (readable
 and not readable pixels)

- TGT_CROP_BOUNDS: report the readable pixel size (valid
 and not valid pixels)

- TGT_CROP_DEFAULT: the default analog crop

- TGT_CROP: the analog crop rectangle

Static selection targets

Selection targets: analog crop

TGT_CROP: the analog crop rectangle

- the portion of the pixel array which is read out to produce the
 output frame

- depends on the current configuration: not a static target

- defines the image field of view

- impacts the sensor frame rate

Selection targets: analog crop

Same output resolution, different analog crop rectangle

Selection targets: analog crop

TGT_CROP: the analog crop rectangle

- so far libcamera requires targets to be readable

- we’ll soon require TGT_CROP to be writable as well

- currently implemented by a few drivers only

- allows to dynamically change the field of view

Blankings controls

 - Blankings allow to control the sensor’s frame rate

- By enlarging or shrinking the “blank” (or inactive) time between
 valid image data you control the actual duration of a frame

- Horizontal blanking (line duration) is usually fixed
- Vertical blanking should be controllable

frame_duration = (width + hblank) * (height + vblank) / pixel_rate

Blankings controls

 - The total frame size depends on the visible sizes as well as on the
 blankings size

- What happens when a new mode is applied to the sensor ?

- some drivers resets blankings to default
- some drivers adjust blankings only if they exceed limits

Blankings controls

You might have seen in a few places already

Blankings controls

 - VBLANK limits EXPOSURE

- if you need to set both of them

1) Set VBLANK → driver updates EXPOSURE
2) Set EXPOSURE

- and you have to be careful about the order of operations

- [PATCH 0/2] media: uapi: Add V4L2_CID_VTOTAL control
 from Benjamin Bara currently in discussion

sub-sampling

 - The same output resolution can be obtain in different ways

sub-sampling

There currently is no API to know if a mode is binned or cropped

- So drivers had to find their own ways to express that

Conclusions

Writing applications that works generically with multiple sensor drivers
is hard

● Abstracting away driver and device detail require a lot of effort

● Drivers might get creative when the API doesn’t help them

Conclusions

A standard library that abstracts away details simplifies applications
development

● API compliance is not enough to guarantee interoperability
● API might be under-specified
● Implementation details cannot be automatically validated

● Requires a lot of review effort
● Gets easier if a reference implementation defines the expected

behavior

Conclusions

A standard consumer of the kernel interfaces is the only way to validate
the implementation and design of the kernel abstractions

● For a long time kernel APIs have been implemented but not
exercised consistently by userspace

● A reference userspace implementation serves to validate design
choices made in kernel space

● Increase consistency and completeness of kernel drivers

? !

? !By the way, we are hiring
jobs@ideasonboard.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

