
Device tree

 Hardware Description
 vs
 Configuration
 vs
 Policy

 Frank Rowand, Sony November 2, 2016
 161029_2114

My elevator pitch description
The purpose of device tree is to

 describe non-discoverable hardware

ePAPR is vague
1.1 Purpose and Scope
...

This specification,..., provides a complete boot program to
client program interface definition, ...

2.1 Overview

The ePAPR specifies a construct called a device tree to describe
system hardware.
...

A device tree is a tree data structure with nodes that describe the
devices in a system.
...

An ePAPR-compliant device tree describes device information in a
system that cannot necessarily be dynamically detected by a client
program.

my elevator pitch...
 Implies information about vendor ID,
 device ID, address, connections within
 the system fabric (eg interrupts)

Somewhat like a PCI header..

PCI header
Vendor IDDevice ID

CommandStatus

Revision IDClass Code

BIST Header Type Lat. Timer Cache Line S.

Base Address Registers

Cardbus CIS Pointer

Subsystem Vendor IDSubsystem ID

Expansion ROM Base Address

Cap. PointerReserved

Reserved

Max Lat. Min Gnt. Interrupt Pin Interrupt Line

0151631

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

Obviously the world has moved on from
the simple world of PCI headers

eg ACPI (?) and the modern device tree

What does the Linux world say?

What the device tree contains

Standard answer:

 A description of the hardware

What the device tree contains

Real world:

 A description of the hardware
 and some other stuff

Other Stuff - trivial example
ePAPR section 3.5: Chosen

 “The chosen node does not represent a real
 device in the system but describes parameters
 chosen or specified by the system firmware at
 run time.”

Even the specification says there is other stuff.

Agenda

- what I would like discussed

- some vague definitions (a partial list)

- examples - quickly (can come back to later if time)

- discussion

What I would like discussed

Should dt contain things other than hw description?

 - If yes, then what?
 - Guidance for proposing and accepting?

 - If no, then where do these things belong?

Definitions of types of information
Intentionally vague

 We could spend hours debating the definitions

 Let's try to avoid that except where it is key
 to the discussion

 Exactly what category a piece of information
 fits into is not always black and white

Definitions - Hardware Description

 Where the hardware is
 What the hardware is
 What the hardware is capable of doing

Examples:
 - located at address 0x10000 - 0x12fff
 - UART supports baud rates up to 38400
 - which interrupt line the device is connected to
 - a set of pins which could be MUXed to either
 an i2c bus controller or a UART is physically
 routed out to a UART connector

Definitions - Configuration

 How the hardware should be set up, how drivers
 should behave, tuning parameters

Examples:
 - set UART baud rate to 9600
 - set a MUX to use a set of pins as an i2c bus
 - set a MUX to use a set of pins as a UART

Definitions - Policy

How to do something, tuning parameters

Sometimes hard to distinguish between policy
and configuration.

Examples:
 - Set clock frequency for highest performance
 - Set clock frequency for max battery duration

Definitions - Communications Channel

Communication Channel

A mechanism to transfer opaque data.

Example: the binary blob to program an FPGA

Special case (not opaque):
 - “chosen” node
 - communication from boot loader to kernel

Definitions - State

A property whose value reports current state.

 Value of property may change over time
 in the live tree.

 Usually the device tree is used to convey a
 description of hw -- a one time event.
 Drivers and subsystems maintain state in their
 own data structures.

Example:

 - property “status”

Still looking for more examples

Definitions - Descriptive Information

Usually for human consumption

ePAPR section 6.1.2.3 label
 Property: label
 Value type: <string>
 Description:
 The label property defines a human readable
 string describing a device. The binding for a
 given device specifies the exact meaning of the
 property for that device.

Example:
 - the name of the UART beside the connector

Example - proposed
proscriptive -- Tells driver what to do

- -
On some devices, CD is broken so that we must force the SDHCI into test
mode and set CD, so that it always detects an SD card as present.

- -
+++ b/Documentation/devicetree/bindings/mmc/mmc.txt

+- force-sd-cd-test-mode: card detection is broken on device, force cd test
+ enable and cd test inserted so host will always detect a card.

Example - revised
describe hardware -- driver decides what to do

- -
Some board configurations can not support sd highspeed mode due to the
distance between the card slot and the controller. The card and controller
report that they are capable of highspeed however, so we need a
mechanism for specifying that the setup is incapable of supporting
highspeed mode.

- -
+++ b/Documentation/devicetree/bindings/mmc/mmc.txt

+- sd-broken-highspeed: Highspeed is broken, even if the controller and card
+ themselves claim they support highspeed.

Example - mtd, in tree
how to probe for partition

commit 9d5da3a9b849
Date: Tue Mar 9 12:27:56 2010 -0700

 mtd: extend physmap_of to let the device tree specify the parition probe

 This is to support custom partitioning schemes for embedded PPC. To use
 define your own mtd_part_parser and then add something like:
 linux,part-probe = "my_probe", "cmdlinepart";
 To the board's dts file.

Example - mtd, new solution

Subject: [PATCH 1/3] mtd: create a partition type device tree binding
Date: Thu, 29 Oct 2015 13:52:30 +0100

This solution is too Linux-specific and depend on some
Linux kernel-internal naming conventions. We need a proper
way of describing partition types that follow the pattern set by
other device tree bindings.

- -
+++ b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt

+ - partition-type : a flash partition type to expect and probe for
+ on this device. See "partition.txt" for available partition types.

Example - configuration
in tree
Date: Tue, 24 Nov 2015

- -
This chip supports two power modes.
1. "one-shot" mode - the chip activates and executes one complete
conversion loop and then shuts itself down. This is the default mode
chosen for raw reads.
2. "continuous" mode - the chip takes continuous measurements.

Continuous mode is more expensive power-wise but may be more reliable.
Add a property so that if preferred, the default power mode for raw
reads can be set to continuous.

Example - configuration
in tree
Date: Tue, 24 Nov 2015

- -
+++ b/Documentation/devicetree/bindings/iio/light/us5182d.txt

+- upisemi,continuous: This chip has two power modes: one-shot (chip takes one
+ measurement and then shuts itself down) and continuous (
+ chip takes continuous measurements). The one-shot mode is
+ more power-friendly but the continuous mode may be more
+ reliable. If this property is specified the continuous
+ mode will be used instead of the default one-shot one for
+ raw reads.

Example - limit driver action
in tree

- -
Documentation/devicetree/bindings/regulator/regulator.txt

- regulator-always-on: boolean, regulator should never be disabled

- -
Not likely to be removed due to extensive use:

$ git grep "regulator-always-on" | grep ".dts[i]*" | wc -l
2217

Example - message to bootloader
in tree
Date: Wed, 6 Jul 2016
Property values are magic u32 constants

- -
+++ b/Documentation/devicetree/bindings/power/reset/reboot-mode.txt

+All mode properties are vendor specific, it is a indication to tell
+the bootloader what to do when the system reboots, and should be named
+as mode-xxx = <magic> (xxx is mode name, magic should be a none-zero value).

+Example:
+ reboot-mode {
+ mode-normal = <BOOT_NORMAL>;
+ mode-recovery = <BOOT_RECOVERY>;
+ mode-bootloader = <BOOT_FASTBOOT>;
+ mode-loader = <BOOT_BL_DOWNLOAD>;
+ }

Example - message to bootloader

- -
An analogy could be what values to write to a command register:
 latch address from data register
 read data from latched address
 write data to latched address

Example - configuration
Date: Tue, 23 Feb 2016

- -
+++ b/Documentation/devicetree/bindings/arm/l2c2x0.txt

+- arm,dynamic-clock-gating : L2 dynamic clock gating. Value: <0> (forcibly
+ disable), <1> (forcibly enable), property absent (retain firmware settings)
+- arm,standby-mode: L2 standby mode enable. Value <0> (forcibly disable),
+ <1> (forcibly enable), property absent (retain firmware settings)

- -
Note: these two properties are consistent with a long list of similar
properties in this binding.

Example - configuration
Proposed

- -
+++ b/Documentation/devicetree/bindings/net/wireless/ieee80211.txt

+The following properties are common to the IEEE 802.11 controllers:
+
+- enable-ieee80211-2ghz: indicates that the 2.4GHz frequency band should be
+ enabled for this device. This must not be used together with the
+ "disable-ieee80211-2ghz" at the same time.
+- enable-ieee80211-5ghz: indicates that the 5GHz frequency band should be
+ enabled for this device. This must not be used together with the
+ "disable-ieee80211-5ghz" at the same time.
+- disable-ieee80211-2ghz: indicates that the 2.4GHz frequency band should be
+ disabled for this device.
+- disable-ieee80211-5ghz: indicates that the 5GHz frequency band should be
+ disabled for this device

Example - configuration data
Proposed alternative for previous slide

- -
If EEPROM is commonly wrong or missing, then seems like you want to
plan ahead and support both enable and disable.

The other approach I've mentioned before is just put raw EEPROM data
into DT to override the EEPROM. This would be better if there's a
large number of settings you need.

Discussion

What I would like discussed

Should dt contain things other than hw description?

 - If yes, then what?
 - Guidance for proposing and accepting?

 - If no, then where do these things belong?

