Flow Based Programming

FBP

Applied to loT Development

OpenloT & ELC Europe 2016

- Whoam|?

- Challenge & Motivation

- Flow-based programming
- Soletta

- Pros & Cons

Who am |?

- Brazilian

- Software Developer since 9yo

- Working with Embedded since 2005
- Software development services

- Passionate about efficiency

- Years of experience with event loop
based programming

- Soletta Architect & Lead Developer

(loT Challenge

- loT differences to traditional embedded systems

- Solutions are focused on a single subset (just hardware, just network. ..)

- Solutions are platform specific, no scalable solutions

- Nothingis integrated

- Hard to reuse your knowledge

- Soletta: uniform API for platform tasks, sensors and networking, from MCU to Linux

- How did we learn to program?
API - What's the loT device workflow?

understand
users

- Do they match?

@ Programming 101

data = read_input();
process_data(data);
report(data);

@ Programming 101

- Procedural Batch Programming
- Single workflow
- Often not even error handling

Expected workflow of an loT
device

@ Workflow of an loT Device

Continuous serving multiple simultaneous input:
- Network
- Sensors
- User

- Timers

Q loT Device + Programming 101 ?

data = read_input();
process_data(data);
report(data);

How to make it work?

Q loT Device « Programming 101 (Try #1)

while (1) { // there! I fixed it
data = read_input();
process_data(data);
report(data);

What about other inputs?

O

loT Device + Programming 101 (Try #2)

while (1) {
net_data = read_network_input();
process_network_data(net_data);
report_network_data(net_data);

sensor_data = read_sensor_input(
process_sensor_data(sensor_data)
report_sensor_data(sensor_data);

); // there! I fixed it!

What about no network input
while new sensor input?

loT Device + Programming 101 (Try #3)

while (1) {

if (has_network_input()) { // there! I fixed it!
net_data = read_network_input();
process_network_data(net_data);
report_network_data(net_data);

}

if (has_sensor_input()) {
sensor_data = read_sensor_input();
process_sensor_data(sensor_data);
report_sensor_data(sensor_data);

} 1. What about simultaneous input?
2. Noticed Feedback LED stops blinking?
3. Busy wait = battery drain!

Q loT Device + Programming 101 (Try #4)

void thread_network(void *data) {
while (1) {
net_data = read_network_input();
process_network_data(net_data);
report_network_data(net_data);

// there! I fixed it!

pthread_create(&t_net, NULL, thread_network, NULL);
pthread_create(&t_sensor, NULL, thread_sensor, NULL);
pthread_create(&t_led, NULL, thread_led_blinking, NULL);
thread_join(t_net, NULL);
Ethread_%oingt_sensor, NL),LL) .| What about thread-unsafe resources?

pthread_join(t_led, NULL);

Reporting sensors to the network?
GUI/UX updates?

Eve nt-D rlve n - aka. “Main Loop Programming”

- SBIVers

Pro gra mm | n g - graphical user interfaces

Event Driven Programming

while (wait_events(&events, ¤t)) {

if (current->type == NETWORK) {
net_data = read_network_input(current);
process_network_data(net_data);
report_network_data(net_data);

} else if (current->type == SENSOR) {
sensor_data = read_sensor_input(current);
process_sensor_data(sensor_data);
report_sensor_data(sensor_data);

Easy to understand, similar to 101 Try #3.
May use a dispatcher table

@ Event Driven Programming

void on_network_event(event) {
net_data = read_network_input(event);
process_network_data(net_data);
report_network_data(net_data);

register_event_handler (NETWORK, on_network_event);
register_event_handler (SENSOR, on_sensor_event);
wait_and_handle_events(); // blocks forever aka “main loop”

@ Event Driven Programming

- Similar to 101 Programming try #3

- wait_events(list, current) handles multiple input, once at time
- Single threaded usage, may contain multiple threads inside

- Easy toimplement with POSIX select(),poll(),epoll()..

- Timeout is an event

- Suggests short cooperative coroutines, “idler” concept to help

Event Driven Programming: idler

time .
“ LED - LED LED LED LED - LED LED LED
process_network_data() process_network_data()
4 seconds 8 seconds
LED | @i | LED | i | LED LED | il | LED | @i | LED | QidtN | LED | Qid) LED

 AFHILEROEER0E EFRIYEROEER DL

although it feels more responsive,
overall processing time is increased

Event Driven Programming: idler

void process_data(data, on_done_cb) { Oﬁghuﬂcode
truct ctx *ctx = malloc(...); '
struct ctx *ctx = malloc(?' void process_data(data) {
ctx->on_done_cb = on_done_cb; for (i = 0:
ctx->i = 0; . .
ctx->data = data; }+: S EREE= ORI
ctx->idler = idler_start(L e i 5 -
process_data_idler, ctx);) semme sl)
} .
Blocks the main loop for
void process_data_idler(void *d) { COUNT * time(process_item)
struct ctx *ctx = d;
if (ctx->i == ctx->data->count) {

idler_stop(ctx->idler);
ctx->on_done_cb(ctx->data);
free(ctx);
return;
}
(ctx->data->item[ctx->i]);
ctx->i++;

O

Event Driven Programming: idler

Pros:

- no real concurrency: single threaded, no need for locks

- works everywhere, even on single task systems

- lean on memory, you manually save your “stack™ in callback context
Cons:

- requires manual analysis and algorithm segmentation

- requires callbacks and extra context data

- cancellation and error handling must stop idler and free context data

- Painful to chain multiple stages (read, process, report...)

- Focus on scalability
- Previous experience
. - Object Oriented inC
SOIetta Project - Main loop - Event Based Programming
- Network
- Sensors
- Actuators

as expected, the same design led to
the same problems...

most users don't get callbacks

Leaks & SEGV

boring pattern “on event, get data”

Flow-Based
Programming

HTTP
Server

interval-=10s

Persistence

interval=10s

Action

Q Flow Based Programming

- Invented by J. Paul Morrison in the early 1970s http://www.jpaulmorrison.com/fhp

- Components are Black Boxes with well defined interfaces (Ports)

- Focus on Information Packets (IP)

- Started to gain traction in Web:

NoFlo

Facebook Flux

Google TensorFlow

Microsoft Azure Event Hubs

- Also on Embedded Systems:

ROS

MicroFlo

NodeRED

- Alsoon

Multimedia:

V4l

Gstreamer

Apple Quartz

http://www.jpaulmorrison.com/fbp
http://www.jpaulmorrison.com/fbp

Q FBP Concepts & Terms

Nodel(Typel) OUT -> IN Node2(Type2)

Node 1 FT > @ Node? E
O '

FBP is easy to read,
write and visualize

Q FBP: Nodes as Black Boxes

- Simple interface

- Low (no?!) coupling, allows replacing components

- Easy to optimize code size by removing unused ports

- Parallelization

- Isolation (including processes)

- Internally can use Event-Driven Programming (Main Loop), Threads...

If an FBP program ever crashes it's guaranteed
that it's the node type provider fault!

Q FBP: It’s all about Information Packets

- “What goes where”

- Clear data ownership

- Memory management hidden in the core

- Callbacks hidden in the core

- Packet delivery can be delayed - reduced power consumption!

- Packet memory can be recycled - reduced memory fragmentation!
- Ports and Packets can be typed - compile & runtime safety

Leaks or SEGV are impossible

y - Scalability - MCU and u
SOIetta S FBP - Extensibilxi’ty p

Configurations

more details and a comparison with classical FBP at:
https://github.com/solettaproject/soletta/wiki
/

Flow-Based-Programming-Study

@ Soletta FBP: Statically Typed Packets & Ports

- More information allows more optimization possibilities

- Type checking at both compile and runtime

- Pre-defined basic packet types (boolean, integer, string, direction-vector...)
- Composed packet types, similar to structures

- Extensible via user-defined types for domain specific data

@ Soletta FBP: Packet Delivery & Ownership

- Packets are immutable aka “read-only”

- Packets are created by nodes and sent on its output ports

- Once sent, flow core owns the packets

- Packets are queued for delivery

- Each delivery happens from different main loop iteration

- Multiple connections are allowed to/from ports

- Ports know of connections using connect () and disconnect()
- Packets are delivered by calling port’'s process()

@ Soletta Usage Workflow
source.c Binar
' & Linker Indry

sol-fbp-
generator

sol-flow- !

source.fbp

' board json !

sol-fhp-
runner

@ Soletta FBP: Configuration

- Unique feature!

- Single FBP handling multiple hardware configurations
sol-flow-S{APP_NAME}-S{BOARD_NAME} . json

- Board name from libsoletta.so, envvar or autodetected

- Fallback so1-f1low. json allows easily testing on PC with console or GTK...

sol-fbp-generator -c file.json..

@ Soletta FBP: Node Types (Components)

- Pointer to C structure with open (), close() and ports

- Built-in to libsoletta.so, application or external “module.so™

- Descriptions (meta-information) can be compiled out
sol-fbp-generator usesJSON descriptions to output “resolved” code
sol-fbp-runner usescompiled in descriptions

- Can be auto-generated by meta-types using DECLARE= (FBP, Composed, JS..)

Q Soletta FBP: Node Type Options

gpiol(gpio/reader)
T"-> PIN gpiol
‘true’ -> ACTIVE_LOW gpiol

- Simplifies setup
- Efficient memory usage
- Allows external configuration

)

gpiol(gpio/reader:pin=1,active_low=true)

or

gpiol(my_gpiol) ‘

“name": "my_gpiol’,
“type™: "gpio/reader”,
"options™: {
"pin’: 1,
"active_low": true

@ FBP - Pros & Cons

Cons:

- Paradigm shift

- Although small, still adds overhead compared to carefully written C code

- Requires “bindings” (node type module) to use 3rd party libraries

- Needs balance on what to write as FBP and what to create custom node types

Pros:

- Noleaks or SEGV, reduced blaming!

- Simple interface (nodes & ports) eases team collaboration

- Easy to read, write and visualize, aids communication with customers & designers
- Super fast prototyping & testing

Thank You!
Questions?

Gustavo Sverzut Barbieri
<barbieri@profusion.mobi>

github.com/solettaproject/soletta/blob/master/
doc/tutorials/ostro-oic-tutorial/step0/tutorial.md

https://github.com/solettaproject/soletta/blob/master/doc/tutorials/ostro-oic-tutorial/step0/tutorial.md
https://github.com/solettaproject/soletta/blob/master/doc/tutorials/ostro-oic-tutorial/step0/tutorial.md
https://github.com/solettaproject/soletta/blob/master/doc/tutorials/ostro-oic-tutorial/step0/tutorial.md
https://github.com/solettaproject/soletta/blob/master/doc/tutorials/ostro-oic-tutorial/step0/tutorial.md

