
Flow Based Programming

Applied to IoT Development
OpenIoT & ELC Europe 2016

FBP

Agenda

- Who am I?

- Challenge & Motivation

- Flow-based programming

- Soletta

- Pros & Cons

Who am I?

- Brazilian

- Software Developer since 9yo

- Working with Embedded since 2005

- Software development services

- Passionate about efficiency

- Years of experience with event loop
based programming

- Soletta Architect & Lead Developer

Gustavo Sverzut Barbieri
Computer Engineer

ProFUSION embedded systems

IoT Challenge

- IoT differences to traditional embedded systems

- Solutions are focused on a single subset (just hardware, just network…)

- Solutions are platform specific, no scalable solutions

- Nothing is integrated

- Hard to reuse your knowledge

- Soletta: uniform API for platform tasks, sensors and networking, from MCU to Linux

http://github.com/solettaproject

creating an
efficient & easy to

use API requires
you to understand

your users

- How did we learn to program?

- What’s the IoT device workflow?

- Do they match?

Programming 101

int main(int argc, char *argv[]) {
data = read_input();
process_data(data);
report(data);
return 0;

}

Programming 101

- Procedural Batch Programming

- Single workflow

- Often not even error handling

Expected workflow of an IoT
device

Workflow of an IoT Device

Continuous serving multiple simultaneous input:

- Network

- Sensors

- User

- Timers

IoT Device + Programming 101 ?

int main(int argc, char *argv[]) {
data = read_input();
process_data(data);
report(data);
return 0;

}

How to make it work?

IoT Device + Programming 101 (Try #1)

int main(int argc, char *argv[]) {
 while (1) { // there! I fixed it

data = read_input();
process_data(data);
report(data);

}
return 0;

}

What about other inputs?

IoT Device + Programming 101 (Try #2)

int main(int argc, char *argv[]) {
 while (1) {

net_data = read_network_input();
process_network_data(net_data);
report_network_data(net_data);

sensor_data = read_sensor_input(); // there! I fixed it!
process_sensor_data(sensor_data);
report_sensor_data(sensor_data);

}
return 0;

}
What about no network input

while new sensor input?

IoT Device + Programming 101 (Try #3)

int main(int argc, char *argv[]) {
 while (1) {

if (has_network_input()) { // there! I fixed it!
net_data = read_network_input();
process_network_data(net_data);
report_network_data(net_data);

}
if (has_sensor_input()) {

sensor_data = read_sensor_input();
process_sensor_data(sensor_data);
report_sensor_data(sensor_data);

}
}
return 0;

}

1. What about simultaneous input?
2. Noticed Feedback LED stops blinking?
3. Busy wait = battery drain!

IoT Device + Programming 101 (Try #4)
void thread_network(void *data) {

while (1) {
net_data = read_network_input();
process_network_data(net_data);
report_network_data(net_data);

}
}

int main(int argc, char *argv[]) {
// there! I fixed it!
pthread_create(&t_net, NULL, thread_network, NULL);
pthread_create(&t_sensor, NULL, thread_sensor, NULL);
pthread_create(&t_led, NULL, thread_led_blinking, NULL);
pthread_join(t_net, NULL);
pthread_join(t_sensor, NULL);
pthread_join(t_led, NULL);
return 0;

}

What about thread-unsafe resources?
Reporting sensors to the network?

GUI/UX updates?

Event-Driven
Programming

widely known paradigm

- a.k.a. “Main Loop Programming”
- servers
- graphical user interfaces

Event Driven Programming

int main(int argc, char *argv[]) {
 while (wait_events(&events, ¤t)) {

if (current->type == NETWORK) {
net_data = read_network_input(current);
process_network_data(net_data);
report_network_data(net_data);

} else if (current->type == SENSOR) {
sensor_data = read_sensor_input(current);
process_sensor_data(sensor_data);
report_sensor_data(sensor_data);

}
}
return 0;

} Easy to understand, similar to 101 Try #3.
May use a dispatcher table

Event Driven Programming

void on_network_event(event) {
net_data = read_network_input(event);
process_network_data(net_data);
report_network_data(net_data);

}

int main(int argc, char *argv[]) {
register_event_handler(NETWORK, on_network_event);
register_event_handler(SENSOR, on_sensor_event);
wait_and_handle_events(); // blocks forever aka “main loop”
return 0;

}

Event Driven Programming

- Similar to 101 Programming try #3

- wait_events(list, current) handles multiple input, once at time

- Single threaded usage, may contain multiple threads inside

- Easy to implement with POSIX select(), poll(), epoll()...

- Timeout is an event

- Suggests short cooperative coroutines, “idler” concept to help

Event Driven Programming: idler

process_network_data()
4 seconds

process_network_data()
8 seconds

LED

time

LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED

LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED LED

LED

⅓
second

each

although it feels more responsive,
overall processing time is increased

Event Driven Programming: idler
Original code:
void process_data(data) {

for (i = 0;
i < data->count;
i++)

 process_item(data->item[i]);
}

void process_data(data, on_done_cb) {
struct ctx *ctx = malloc(...);
ctx->on_done_cb = on_done_cb;
ctx->i = 0;
ctx->data = data;
ctx->idler = idler_start(

process_data_idler, ctx);
}

void process_data_idler(void *d) {
struct ctx *ctx = d;
if (ctx->i == ctx->data->count) {

idler_stop(ctx->idler);
ctx->on_done_cb(ctx->data);
free(ctx);
return;

}
process_item(ctx->data->item[ctx->i]);
ctx->i++;

}

Blocks the main loop for
COUNT * time(process_item)

Blocks the main loop for
time(process_item)

Event Driven Programming: idler
Pros:

- no real concurrency: single threaded, no need for locks

- works everywhere, even on single task systems

- lean on memory, you manually save your “stack” in callback context

Cons:

- requires manual analysis and algorithm segmentation

- requires callbacks and extra context data

- cancellation and error handling must stop idler and free context data

- Painful to chain multiple stages (read, process, report…)

Soletta Project
initial design choices

http://github.com/solettaproject

- Focus on scalability

- Previous experience

- Object Oriented in C

- Main loop - Event Based Programming

- Network

- Sensors

- Actuators

as expected, the same design led to
the same problems...

Leaks & SEGV

most users don’t get callbacks

boring pattern “on event, get data”

Flow-Based
Programming

technology from 1970
that came to rescue

the web…
… and IoT

Persistence

Timer

Action

interval=10s

interval=10s

“tick”

HTTP
ServerDial

Flow Based Programming

- Invented by J. Paul Morrison in the early 1970s http://www.jpaulmorrison.com/fbp

- Components are Black Boxes with well defined interfaces (Ports)

- Focus on Information Packets (IP)

- Started to gain traction in Web:

- Also on Embedded Systems:

- Also on Multimedia:

Facebook Flux Google TensorFlow Microsoft Azure Event HubsNoFlo

NodeREDROS MicroFlo

Apple QuartzV4L Gstreamer

http://www.jpaulmorrison.com/fbp
http://www.jpaulmorrison.com/fbp

FBP Concepts & Terms

Input PortOutput Port

Connection

Node a.k.a.
Process

Node 2

Information Packet

Node 1
OUT IN

A

B

Node1(Type1) OUT -> IN Node2(Type2)

FBP is easy to read,
write and visualize

Node Type a.k.a.
Component

IP

FBP: Nodes as Black Boxes

- Simple interface

- Low (no?!) coupling, allows replacing components

- Easy to optimize code size by removing unused ports

- Parallelization

- Isolation (including processes)

- Internally can use Event-Driven Programming (Main Loop), Threads...

If an FBP program ever crashes it’s guaranteed
that it’s the node type provider fault!

FBP: It’s all about Information Packets

- “What goes where”

- Clear data ownership

- Memory management hidden in the core

- Callbacks hidden in the core

- Packet delivery can be delayed - reduced power consumption!

- Packet memory can be recycled - reduced memory fragmentation!

- Ports and Packets can be typed - compile & runtime safety

Leaks or SEGV are impossible

Soletta’s FBP
What’s specific & Why?

- Scalability - MCU and up

- Extensibility

- Configurations

more details and a comparison with classical FBP at:
https://github.com/solettaproject/soletta/wiki
/
Flow-Based-Programming-Study

- More information allows more optimization possibilities

- Type checking at both compile and runtime

- Pre-defined basic packet types (boolean, integer, string, direction-vector…)

- Composed packet types, similar to structures

- Extensible via user-defined types for domain specific data

Soletta FBP: Statically Typed Packets & Ports

- Packets are immutable aka “read-only”

- Packets are created by nodes and sent on its output ports

- Once sent, flow core owns the packets

- Packets are queued for delivery

- Each delivery happens from different main loop iteration

- Multiple connections are allowed to/from ports

- Ports know of connections using connect() and disconnect()

- Packets are delivered by calling port’s process()

Soletta FBP: Packet Delivery & Ownership

Soletta Usage Workflow

source.c

source.fbp

BinaryCompiler
& Linker

sol-flow-
board.json

sol-fbp-
generator

generated
source.c

sol-fbp-
runner

- Unique feature!

- Single FBP handling multiple hardware configurations

- sol-flow-${APP_NAME}-${BOARD_NAME}.json

- Board name from libsoletta.so, envvar or autodetected

- Fallback sol-flow.json allows easily testing on PC with console or GTK…

- sol-fbp-generator -c file.json ...

Soletta FBP: Configuration

- Pointer to C structure with open(), close() and ports

- Built-in to libsoletta.so, application or external “module.so”

- Descriptions (meta-information) can be compiled out

- sol-fbp-generator uses JSON descriptions to output “resolved” code

- sol-fbp-runner uses compiled in descriptions

- Can be auto-generated by meta-types using DECLARE= (FBP, Composed, JS...)

Soletta FBP: Node Types (Components)

http://solettaproject.github.io/docs/nodetypes/

- Simplifies setup

- Efficient memory usage

- Allows external configuration

Soletta FBP: Node Type Options

gpio1(gpio/reader)
‘1’ -> PIN gpio1
‘true’ -> ACTIVE_LOW gpio1

gpio1(gpio/reader:pin=1,active_low=true)

gpio1(my_gpio1) sol-flow-myboard1.json:

 "name": "my_gpio1",
 "type": "gpio/reader",
 "options": {
 "pin": 1,
 "active_low": true
 }

or

FBP - Pros & Cons

Cons:

- Paradigm shift
- Although small, still adds overhead compared to carefully written C code
- Requires “bindings” (node type module) to use 3rd party libraries
- Needs balance on what to write as FBP and what to create custom node types

Pros:

- No leaks or SEGV, reduced blaming!
- Simple interface (nodes & ports) eases team collaboration
- Easy to read, write and visualize, aids communication with customers & designers
- Super fast prototyping & testing

Gustavo Sverzut Barbieri
<barbieri@profusion.mobi>

Thank You!
Questions?

github.com/solettaproject/soletta/blob/master/
doc/tutorials/ostro-oic-tutorial/step0/tutorial.md

https://github.com/solettaproject/soletta/blob/master/doc/tutorials/ostro-oic-tutorial/step0/tutorial.md
https://github.com/solettaproject/soletta/blob/master/doc/tutorials/ostro-oic-tutorial/step0/tutorial.md
https://github.com/solettaproject/soletta/blob/master/doc/tutorials/ostro-oic-tutorial/step0/tutorial.md
https://github.com/solettaproject/soletta/blob/master/doc/tutorials/ostro-oic-tutorial/step0/tutorial.md

