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Reference counting

Wikipedia definition
In computer science, reference counting is a programming tech-
nique of storing the number of references, pointers, or handles to
a resource, such as an object, a block of memory, disk space, and
others. …
The main advantage of the reference counting … is that objects
are reclaimed as soon as they can no longer be referenced…

Done in the Kernel via
struct kref1

1described in Documentation/core-api/kref.rst
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https://en.wikipedia.org/wiki/Reference_counting
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/core-api/kref.rst


Now to the Linux driver model

struct device is the research element here!
embeds struct kobject2 which embeds struct kref
refcount is modified with get_device and put_device
a release callback is used when refcount is 0

2described in Documentation/core-api/kobject.rst
Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 5 / 44

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/core-api/kobject.rst


Physical vs. logical device - simplified

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Logical device Physical device
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Physical vs. logical device - more realistic

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Logical device Physical device

Intermediate device:

struct i2c_adapter

Logical device
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The actual problem

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 8 / 44



Good case - initialization during boot

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

ref count = 1
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Good case - userspace open()

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

ref count = 2
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Good case - userspace close()

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

ref count = 1
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Good case - unbind/poweroff

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

ref count = 0
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Problematic case 1 - not the main case here

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

ref count = 1
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Dangerous construct! Mixes different lifetimes

struct rcar_i2c_priv {
...
/* contains a struct device */
struct i2c_adapter adap;
...

}

priv = devm_kzalloc(&pdev->dev, sizeof(*priv),
GFP_KERNEL);

...

ret = i2c_add_adapter(&priv->adap);

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 14 / 44



Problematic case 2 - this is the main case

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

ref count = 1

Needs protection from the subsystem!
especially with devm_kzalloc (but this makes problems detectable)
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My research questions

Which subsystems use structs with embedded kobjects3 and allow
allocation with devm_kzalloc?

coccinelle to the rescue!
only scanned for struct device instead of all kobjects to limit the
search space
found ~630 structs embedding a struct device, either directly or
indirectly
each struct was then scanned for allocation with devm_kzalloc

And how does it protect against a too early release of the embedded
kobject?

needs manual inspection

3like I2C uses i2c_adapter embedding a struct device
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Results
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I have good news and bad news

Good news
less subsystems than I guessed are affected

Bad news
every subsystem that was found I have issues with
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Live Demo: Good case: UART
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Live Demo: MTD
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Results: MTD

struct spi_nor embeds struct mtd_info which embeds struct
device
crashes when unbinding while mtdXro is opened
no protection mechanism found
but this comment in mtdcore.c from March 2009

/* REVISIT once MTD uses the driver model better, whoever allocates
* the mtd_info will probably want to use the release() hook...
*/
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Live Demo: I2C
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Results: I2C

struct i2c_adapter embeds struct device
blocks uninterruptible when unbinding while i2c-X is opened
i2c_del_adapter waits until all references are gone using a struct
completion with the release function of the logical device
also has a comment from January 2015

/* wait until all references to the device are gone
*
* FIXME: This is old code and should ideally be replaced by an
* alternative which results in decoupling the lifetime of the struct
* device from the i2c_adapter, like spi or netdev do. Any solution
* should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled!
*/
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How does this completion work?

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

1. in remove, call i2c_del_adapter

2. in i2c_del_adapter, wait_for_completion

6. waiting ended, everything can be freed now

3. After close, refcount goes 0

4. refcount is 0, call release

5. in release, call complete
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Results: I3C

struct i3c_master_controller embeds struct device
can’t test because no HW
there may be some protection, not fully understood yet
but for backwards compatibility, it also embeds struct i2c_adapter
and uses i2c_del_adapter to remove it
so it also uses a completion when unbinding
Sorry!
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Results: NTB

struct ntb_dev embeds struct device
can’t test because no HW
review reveals it also uses a completion when unbinding
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Live Demo: VIRTIO
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Results: VIRTIO

virtio_device embeds struct device
forces all drivers to use the release callback
one driver gets it wrong with devres
fails when enabling CONFIG_DEBUG_KOBJECT_RELEASE
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How does this release callback work?

Platform device:

Mem = 0xe6800000

IRQ = 300

struct virtio_device

1. Probe: allocate private struct including a virtio_device with kzalloc

2. Probe: populate virtio_device.release with a callback calling kfree

(something is done with these devices)

3. Unbind: delete (but not release) virtio_device, refcount goes 0

4. or 5. Unbind: remove all resources attached to the platform_device

             except private struct including the virtio_device

4. or 5. call release, private struct
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Why did this one driver fail?

Platform device:

Mem = 0xe6800000

IRQ = 300

struct virtio_device

1. Probe: allocate private struct including a virtio_device with devm_kzalloc

2. Probe: populate virtio_device.release with a callback calling devm_kfree

(something is done with these devices)

3. Unbind: delete (but not release) virtio_device, refcount goes 0

6.. Unbind: remove all resources attached to the platform_device

                  including private struct including the virtio_device

                  because of devres
4. refcount is 0, release will be called

5. actually calling release will be delayed by

    CONFIG_DEBUG_KOBJECT_RELEASE

7. try to call release but the device and its

    release function are gone

8. OOPS
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I don’t like this approach

It was tried multiple times to get it right:
edfd52e63672 ("virtio: Add platform bus driver for memory mapped virtio device")
cecdbdc3771e ("virtio_mmio: Set dev.release() to avoid warning")
7eb781b1bbb7 ("virtio_mmio: add cleanup for virtio_mmio_probe")
c2e90800aef2 ("virtio_mmio: fix devm cleanup")

And it was still not correct until a few hours minutes ago4.

Don’t let drivers handle the lifetime of objects outside their scope!
Bartosz formulated the same opinion in this talk.

4The fix is here
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Results: Auxiliary bus

also expects drivers to populate the release callback
at least extensively documented5

still pmic_glink.c got it likely wrong (can’t test no HW)
but the other drivers do it right

Or? Let’s check this driver.

5include/linux/auxiliary_bus.h
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Sketch of a better API?

gp_aux_data->region_start = pci_resource_start(pdev, 0);
gp_aux_data->region_end = pci_resource_end(pdev, 0);

aux_dev = auxiliary_device_alloc(&pdev->dev, gp_aux_data);
aux_dev->name = aux_dev_otp_e2p_name;
aux_dev->id = ida_alloc(&gp_client_ida, GFP_KERNEL);

/* And if you still do something special */
aux_dev->release = my_release_func;

aux_dev_register(aux_bus, aux_dev);
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Results: USB Gadget

struct usb_gadget embeds struct device
also expects drivers to populate the release callback
on unbind, it blocks like a completion but because of
cancel_work_sync
combinations of devm_kzalloc and release callback exist
I was not able to trigger a problem so far, though
USB is usually good, but I will investigate more
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Conclusion
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Summary

we do have different kinds of life cycle problems in the Kernel

including really long lasting ones

devm_kzalloc is not directly responsible for the ones researched here

devm_kzalloc makes it here easier to fall into the trap
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Further research activities for this type of problem

repeat the above search but for kzalloc with accompanying kfree
in remove of the physical device (instead of the release callback in
the logical device)

scan for embedded struct kobject not only struct device

scan for empty release functions

…
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Potential solutions

There seems to be an agreement that pushing responsibility to drivers
is not the way to go

garbage collector??
Nobody likes it

__cleanup__ + kref as suggested by Bartosz?
Paradigm shift, probably looong way to go

Layers using devices should keep responsibility for them.
Convert faulty subsystems to *_alloc and *_register
My favourite solution because it also creates consistency among subsystems.

In any case, this is a lot of work!
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Reminder: more lifecycle issues exist

character devices interaction with platform devices

dependency hell between devices
I heard V4L2 knows about this…

existing protections work mostly but still have race conditions
At least with character devices, but at least a prototype solution exists

…
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Our safety process for lifecycle issues in drivers

If an issue regarding lifecycles of objects in Linux device drivers is
discovered, the process is:

add it to the list of already known lifecycle problems.

It is agreed that fixing these issues would be great. But nobody does
it because there be dragons and it simply is a lot of annoying work.
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The future

Frankly? Not bright.

I think these problems are not “raising spirits”, so I guess we see some
of the FIXME comments above still in 10 years

First step is to raise interest, so funding will be availabe to wok on
lifecycle issues consistently. I’ll try.

Until then, I will slowly start fixing the I2C subsystem, at least.

At least, I fixed VIRTIO for this talk :)
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Thank you for supporting this!
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Thank you for coccinelle!
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The End

Questions? Comments?
Questions?

Right here, right now…
At the conference
wsa@kernel.org
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