
Subsystems with object lifetime issues
(in the embedded case)

Wolfram Sang, Consultant / Renesas

29.06.2023, EOSS 2023

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 1 / 44



1 Basics

2 The actual problem

3 Results

4 Conclusion

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 2 / 44



Basics

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 3 / 44



Reference counting

Wikipedia definition
In computer science, reference counting is a programming tech-
nique of storing the number of references, pointers, or handles to
a resource, such as an object, a block of memory, disk space, and
others. …
The main advantage of the reference counting … is that objects
are reclaimed as soon as they can no longer be referenced…

Done in the Kernel via
struct kref1

1described in Documentation/core-api/kref.rst
Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 4 / 44

https://en.wikipedia.org/wiki/Reference_counting
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/core-api/kref.rst


Now to the Linux driver model

struct device is the research element here!
embeds struct kobject2 which embeds struct kref
refcount is modified with get_device and put_device
a release callback is used when refcount is 0

2described in Documentation/core-api/kobject.rst
Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 5 / 44

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/core-api/kobject.rst


Physical vs. logical device - simplified

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Logical device Physical device

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 6 / 44



Physical vs. logical device - more realistic

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Logical device Physical device

Intermediate device:

struct i2c_adapter

Logical device

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 7 / 44



The actual problem

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 8 / 44



Good case - initialization during boot

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

ref count = 1

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 9 / 44



Good case - userspace open()

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

ref count = 2

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 10 / 44



Good case - userspace close()

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

ref count = 1

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 11 / 44



Good case - unbind/poweroff

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

ref count = 0

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 12 / 44



Problematic case 1 - not the main case here

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

ref count = 1

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 13 / 44



Dangerous construct! Mixes different lifetimes

struct rcar_i2c_priv {
...
/* contains a struct device */
struct i2c_adapter adap;
...

}

priv = devm_kzalloc(&pdev->dev, sizeof(*priv),
GFP_KERNEL);

...

ret = i2c_add_adapter(&priv->adap);

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 14 / 44



Problematic case 2 - this is the main case

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

ref count = 1

Needs protection from the subsystem!
especially with devm_kzalloc (but this makes problems detectable)

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 15 / 44



My research questions

Which subsystems use structs with embedded kobjects3 and allow
allocation with devm_kzalloc?

coccinelle to the rescue!
only scanned for struct device instead of all kobjects to limit the
search space
found ~630 structs embedding a struct device, either directly or
indirectly
each struct was then scanned for allocation with devm_kzalloc

And how does it protect against a too early release of the embedded
kobject?

needs manual inspection

3like I2C uses i2c_adapter embedding a struct device
Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 16 / 44



Results

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 17 / 44



I have good news and bad news

Good news
less subsystems than I guessed are affected

Bad news
every subsystem that was found I have issues with

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 18 / 44



I have good news and bad news

Good news
less subsystems than I guessed are affected

Bad news
every subsystem that was found I have issues with

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 18 / 44



Live Demo: Good case: UART

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 19 / 44



Live Demo: MTD

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 20 / 44



Results: MTD

struct spi_nor embeds struct mtd_info which embeds struct
device
crashes when unbinding while mtdXro is opened
no protection mechanism found
but this comment in mtdcore.c from March 2009

/* REVISIT once MTD uses the driver model better, whoever allocates
* the mtd_info will probably want to use the release() hook...
*/

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 21 / 44



Live Demo: I2C

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 22 / 44



Results: I2C

struct i2c_adapter embeds struct device
blocks uninterruptible when unbinding while i2c-X is opened
i2c_del_adapter waits until all references are gone using a struct
completion with the release function of the logical device
also has a comment from January 2015

/* wait until all references to the device are gone
*
* FIXME: This is old code and should ideally be replaced by an
* alternative which results in decoupling the lifetime of the struct
* device from the i2c_adapter, like spi or netdev do. Any solution
* should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled!
*/

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 23 / 44



How does this completion work?

Character device:

/dev/i2c-2

Platform device:

Mem = 0xe60b2000

IRQ = 242

Intermediate device:

struct i2c_adapter

1. in remove, call i2c_del_adapter

2. in i2c_del_adapter, wait_for_completion

6. waiting ended, everything can be freed now

3. After close, refcount goes 0

4. refcount is 0, call release

5. in release, call complete

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 24 / 44



Results: I3C

struct i3c_master_controller embeds struct device
can’t test because no HW
there may be some protection, not fully understood yet
but for backwards compatibility, it also embeds struct i2c_adapter
and uses i2c_del_adapter to remove it
so it also uses a completion when unbinding
Sorry!

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 25 / 44



Results: NTB

struct ntb_dev embeds struct device
can’t test because no HW
review reveals it also uses a completion when unbinding

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 26 / 44



Live Demo: VIRTIO

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 27 / 44



Results: VIRTIO

virtio_device embeds struct device
forces all drivers to use the release callback
one driver gets it wrong with devres
fails when enabling CONFIG_DEBUG_KOBJECT_RELEASE

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 28 / 44



How does this release callback work?

Platform device:

Mem = 0xe6800000

IRQ = 300

struct virtio_device

1. Probe: allocate private struct including a virtio_device with kzalloc

2. Probe: populate virtio_device.release with a callback calling kfree

(something is done with these devices)

3. Unbind: delete (but not release) virtio_device, refcount goes 0

4. or 5. Unbind: remove all resources attached to the platform_device

             except private struct including the virtio_device

4. or 5. call release, private struct

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 29 / 44



Why did this one driver fail?

Platform device:

Mem = 0xe6800000

IRQ = 300

struct virtio_device

1. Probe: allocate private struct including a virtio_device with devm_kzalloc

2. Probe: populate virtio_device.release with a callback calling devm_kfree

(something is done with these devices)

3. Unbind: delete (but not release) virtio_device, refcount goes 0

6.. Unbind: remove all resources attached to the platform_device

                  including private struct including the virtio_device

                  because of devres
4. refcount is 0, release will be called

5. actually calling release will be delayed by

    CONFIG_DEBUG_KOBJECT_RELEASE

7. try to call release but the device and its

    release function are gone

8. OOPS

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 30 / 44



I don’t like this approach

It was tried multiple times to get it right:
edfd52e63672 ("virtio: Add platform bus driver for memory mapped virtio device")
cecdbdc3771e ("virtio_mmio: Set dev.release() to avoid warning")
7eb781b1bbb7 ("virtio_mmio: add cleanup for virtio_mmio_probe")
c2e90800aef2 ("virtio_mmio: fix devm cleanup")

And it was still not correct until a few hours minutes ago4.

Don’t let drivers handle the lifetime of objects outside their scope!
Bartosz formulated the same opinion in this talk.

4The fix is here
Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 31 / 44

https://lore.kernel.org/lkml/20230629120526.7184-1-wsa+renesas@sang-engineering.com


Results: Auxiliary bus

also expects drivers to populate the release callback
at least extensively documented5

still pmic_glink.c got it likely wrong (can’t test no HW)
but the other drivers do it right

Or? Let’s check this driver.

5include/linux/auxiliary_bus.h
Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 32 / 44

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/misc/mchp_pci1xxxx/mchp_pci1xxxx_gp.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/auxiliary_bus.h


Sketch of a better API?

gp_aux_data->region_start = pci_resource_start(pdev, 0);
gp_aux_data->region_end = pci_resource_end(pdev, 0);

aux_dev = auxiliary_device_alloc(&pdev->dev, gp_aux_data);
aux_dev->name = aux_dev_otp_e2p_name;
aux_dev->id = ida_alloc(&gp_client_ida, GFP_KERNEL);

/* And if you still do something special */
aux_dev->release = my_release_func;

aux_dev_register(aux_bus, aux_dev);

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 33 / 44



Results: USB Gadget

struct usb_gadget embeds struct device
also expects drivers to populate the release callback
on unbind, it blocks like a completion but because of
cancel_work_sync
combinations of devm_kzalloc and release callback exist
I was not able to trigger a problem so far, though
USB is usually good, but I will investigate more

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 34 / 44



Conclusion

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 35 / 44



Summary

we do have different kinds of life cycle problems in the Kernel

including really long lasting ones

devm_kzalloc is not directly responsible for the ones researched here

devm_kzalloc makes it here easier to fall into the trap

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 36 / 44



Further research activities for this type of problem

repeat the above search but for kzalloc with accompanying kfree
in remove of the physical device (instead of the release callback in
the logical device)

scan for embedded struct kobject not only struct device

scan for empty release functions

…

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 37 / 44



Potential solutions

There seems to be an agreement that pushing responsibility to drivers
is not the way to go

garbage collector??
Nobody likes it

__cleanup__ + kref as suggested by Bartosz?
Paradigm shift, probably looong way to go

Layers using devices should keep responsibility for them.
Convert faulty subsystems to *_alloc and *_register
My favourite solution because it also creates consistency among subsystems.

In any case, this is a lot of work!

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 38 / 44



Reminder: more lifecycle issues exist

character devices interaction with platform devices

dependency hell between devices
I heard V4L2 knows about this…

existing protections work mostly but still have race conditions
At least with character devices, but at least a prototype solution exists

…

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 39 / 44



Our safety process for lifecycle issues in drivers

If an issue regarding lifecycles of objects in Linux device drivers is
discovered, the process is:

add it to the list of already known lifecycle problems.

It is agreed that fixing these issues would be great. But nobody does
it because there be dragons and it simply is a lot of annoying work.

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 40 / 44



Our safety process for lifecycle issues in drivers

If an issue regarding lifecycles of objects in Linux device drivers is
discovered, the process is:

add it to the list of already known lifecycle problems.

It is agreed that fixing these issues would be great. But nobody does
it because there be dragons and it simply is a lot of annoying work.

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 40 / 44



Our safety process for lifecycle issues in drivers

If an issue regarding lifecycles of objects in Linux device drivers is
discovered, the process is:

add it to the list of already known lifecycle problems.

It is agreed that fixing these issues would be great. But nobody does
it because there be dragons and it simply is a lot of annoying work.

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 40 / 44



The future

Frankly? Not bright.

I think these problems are not “raising spirits”, so I guess we see some
of the FIXME comments above still in 10 years

First step is to raise interest, so funding will be availabe to wok on
lifecycle issues consistently. I’ll try.

Until then, I will slowly start fixing the I2C subsystem, at least.

At least, I fixed VIRTIO for this talk :)

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 41 / 44



Thank you for supporting this!

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 42 / 44



Thank you for coccinelle!

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 43 / 44



The End

Questions? Comments?
Questions?

Right here, right now…
At the conference
wsa@kernel.org

Wolfram Sang, Consultant / Renesas Subsystems with lifetime issues 29.06.2023, EOSS 2023 44 / 44

mailto:wsa@kernel.org

	Basics
	The actual problem
	Results
	Conclusion

