
Embedded Linux Conference Europe 2012

Your new ARM SoC
Linux support
check-list!

Thomas Petazzoni
Free Electrons
thomas.petazzoni@free-electrons.com

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 1/45



Thomas Petazzoni

I Embedded Linux engineer and trainer at Free Electrons since
2008

I Embedded Linux development: kernel and driver
development, system integration, boot time and power
consumption optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://www.free-electrons.com

I Contributing the kernel support for the new Armada 370
and Armada XP ARM SoCs from Marvell, under contract
with Marvell.

I Major contributor to Buildroot, an open-source, simple and
fast embedded Linux build system

I Living in Toulouse, south west of France

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 2/45

http://www.free-electrons.com


Background

I March 2011, Linus Torvalds, Gaah. Guys, this whole ARM
thing is a f*cking pain in the ass

I More and more ARM SoCs have apperead and are appearing

I The historical maintainer, Russell King, through which all
ARM code was initially going got overflowed by the amount
of code to review

I Code started to flow from sub-architectures maintainers
directly to Linus

I Focus of each sub-architecture teams on their own
problems, no vision of the other sub-architectures.

I Consequences: lot of code duplication, missing common
infrastructures, maintenability problems, etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 3/45



Why?

I In order to solve these problems, the ARM Linux kernel
community has done major changes since the last 2 years

I In the maintenance process
I In the code infrastructure and subsystems

I Not necessarily easy to follow all those changes and know
what are the current best practices

I This talk is an attempt to summarize some of the most
important changes, and provide guidelines for developers
willing to add support for new ARM SoCs in the mainline
Linux kernel

I but it might be useful for people porting Linux on new boards
as well

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 4/45



Know who are the maintainers

I Russell King is now the maintainer for the core ARM support
(i.e anything in arch/arm except the SoC specific code in
arch/arm/mach-<foo> and arch/arm/plat-<bar>).

I Arnd Bergmann and Olof Johansson are the arm-soc
maintainers. All the ARM SoC code must go through them.
They ensure a coherence between how the various SoC
families handle similar problems.

I Also need to interact with the subsystem maintainers
I drivers/clocksource, drivers/irqchip, Thomas

Gleixner
I drivers/pinctrl, Linus Walleij, Stephen Warren
I drivers/gpio, Grant Likely, Linus Walleij
I drivers/clk, Mike Turquette

I Primary mailing list:
linux-arm-kernel@lists.infradead.org

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 5/45



Where is the code, when to submit?

I The arm-soc Git tree is at https://git.kernel.org/?p=
linux/kernel/git/arm/arm-soc.git;a=summary

I Watch the for-next branch that contains what will be
submitted by the ARM SoC maintainers during the next
merge window.

I Generally, the ARM SoC maintainers want to have integrated
all the code from the different ARM sub-architectures a few
(two?) weeks before Linus opens the merge window.

I If you submit your code during the Linus merge window, there
is no way it will get integrated at this point: it will have to
wait for the next merge window.

I Usual Linux contribution guidelines apply: people will make
comments on your code, take them into account, repost. Find
the good balance between patience and perseverance.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 6/45

https://git.kernel.org/?p=linux/kernel/git/arm/arm-soc.git;a=summary
https://git.kernel.org/?p=linux/kernel/git/arm/arm-soc.git;a=summary


Existing code?

I You have existing Linux kernel code to support your SoC?
I There are 99% chances that you should throw it away

completely
I Most of the time, SoC support code written by SoC vendors do

not comply with the Linux coding rules, the Linux
infrastructures, has major design issues, is ugly, etc.

I With the recent major changes in the way to support ARM
SoC, all existing code has become basically irrelevant.

I Of course, existing code useful as a reference to know how the
hardware works. But the code to be submitted should most
likely be written from scratch.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 7/45



Step 1: start minimal

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 8/45



Device Tree

I The purpose of the Device Tree is to move a significant part
of the hardware description into a data structure that is no
longer part of the kernel binary itself.

I This data structure, the Device Tree Source is compiled into
a binary Device Tree Blob

I The Device Tree Blob is loaded into memory by the
bootloader, and passed to the kernel.

I It replaces all the board-*.c files, and removes all the
manual registration of platform_device. Also, no longer
needed to have Kconfig options for each board.

I Usage of the Device Tree is mandatory for all new ARM
SoCs. No way around it.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 9/45



Boot process with a Device Tree Blob

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 10/45



Writing your Device Tree

I Add one <soc>.dtsi file in arch/arm/boot/dts/ that
describes the devices in your SoC

I You can also have multiple <soc>.dtsi files including each
other with the /include/ directive, if you have a SoC family
with multiple SoCs having common things, but also specific
things.

I Add one <board>.dts file in arch/arm/boot/dts/ for each
of the board you support. It shoud /include/ the
appropriate .dtsi file.

I Add a dtb-$(CONFIG ARCH <yourarch>) line in
arch/arm/boot/dts/Makefile for all your board .dts files
so that all the .dtbs are automatically built.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 11/45



Example on Armada 370/XP support

armada-370-xp.dtsi

I armada-370.dtsi
I Board armada-370-db.dts

I armada-xp.dtsi
I armada-xp-mv78230.dtsi
I armada-xp-mv78260.dtsi

I Board openblocks-ax3-4.dts

I armada-xp-mv78460.dtsi
I Board armada-xp-db.dts

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 12/45



bcm2835.dtsi

/include/ "skeleton.dtsi"

/ {

compatible = "brcm,bcm2835";

model = "BCM2835";

interrupt-parent = <&intc>;

chosen {

bootargs = "earlyprintk console=ttyAMA0";

};

soc {

compatible = "simple-bus";

#address-cells = <1>;

#size-cells = <1>;

ranges = <0x7e000000 0x20000000 0x02000000>;

[...]

intc: interrupt-controller {

compatible = "brcm,bcm2835-armctrl-ic";

reg = <0x7e00b200 0x200>;

interrupt-controller;

#interrupt-cells = <2>;

};

uart@20201000 {

compatible = "brcm,bcm2835-pl011", "arm,pl011", "arm,primecell";

reg = <0x7e201000 0x1000>;

interrupts = <2 25>;

clock-frequency = <3000000>;

status = "disabled";

};

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 13/45



bcm2835-rpi-b.dts

/dts-v1/;

/memreserve/ 0x0c000000 0x04000000;

/include/ "bcm2835.dtsi"

/ {

compatible = "raspberrypi,model-b", "brcm,bcm2835";

model = "Raspberry Pi Model B";

memory {

reg = <0 0x10000000>;

};

soc {

uart@20201000 {

status = "okay";

};

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 14/45



Basic things in arch/arm/mach-<yourarch>

I Kconfig, describing your ARCH_<yourarch> option, as well
as sub-options for each SoC if your family has multiple SoC.
No per-board options: your kernel image is independent from
the board details.

I Makefile, compiling just one file, <yoursoc>.c

I <yoursoc>.c, that contains a DT_MACHINE_START definition,
either per SoC or per family of SoC

I <yoursoc>.h, that contains a minimal set of constants used
to implement a static mapping for the registers used to access
the UARTs. No constants with addresses or IRQ numbers for
any other devices: they will be provided through the Device
Tree.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 15/45



Multi-SoC, multi-platform kernel

I Originally a given Linux kernel image could only support
multiple boards using a given SoC, boards being “detected”
thanks to the machine ID.

I Now, a given mach-foo directory must allow the support for
all the SoCs it supports to be compiled into a single kernel
image. No more #ifdef conditionals depending on SoCs, it
must all be runtime detected.

I And further than that, now all new sub-architectures must be
compatible with the CONFIG_ARCH_MULTIPLATFORM

mechanism, which allows the support for all SoCs to be built
into a single binary kernel image.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 16/45



arch/arm/mach-<soc>/<soc>.c (1)

static struct map_desc mysoc_io_desc[] __initdata = {

{

.virtual = (unsigned long) MYSOC_REGS_VIRT_BASE,

.pfn = __phys_to_pfn(MYSOC_REGS_PHYS_BASE),

.length = MYSOC_XP_REGS_SIZE,

.type = MT_DEVICE,

},

};

void __init mysoc_map_io(void)

{

iotable_init(mysoc_io_desc, ARRAY_SIZE(mysoc_io_desc));

}

struct sys_timer mysoc_timer = {

.init = mysoc_timer_init,

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 17/45



arch/arm/mach-<soc>/<soc>.c (2)

static void __init mysoc_dt_init(void)

{

of_platform_populate(NULL, of_default_bus_match_table,

NULL, NULL);

}

static const char * const mysoc_dt_compat[] = {

"vendor,soc-model1",

"vendor,soc-model2",

NULL,

};

DT_MACHINE_START(MYSOC_DT, "Company Wonderful SoC (Device Tree)")

.init_machine = mysoc_dt_init,

.map_io = mysoc_map_io,

.init_irq = irqchip_init,

.timer = &mysoc_timer,

.restart = mysoc_restart,

.dt_compat = mysoc_dt_compat,

MACHINE_END

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 18/45



arch/arm/mach-<soc>/<soc>.h

#ifndef __MYSOC_H

#define __MYSOC_H

#define MYSOC_REGS_PHYS_BASE 0xd0000000

#define MYSOC_REGS_VIRT_BASE IOMEM(0xfeb00000)

#define MYSOC_REGS_SIZE SZ_1M

#endif /* __MYSOC_H */

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 19/45



arch/arm/mach-<soc>/Kconfig

config ARCH_MYSOC

bool "Wonderful SoC" if ARCH_MULTI_V7

select CLKSRC_MMIO

select COMMON_CLK

select GENERIC_CLOCKEVENTS

select GENERIC_IRQ_CHIP

select IRQ_DOMAIN

select MULTI_IRQ_HANDLER

select PINCTRL

select SPARSE_IRQ

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 20/45



Earlyprintk support

I The first thing to have is obviously the earlyprintk support, to
get early messages from the kernel.

I In arch/arm/Kconfig.debug, in the choice of DEBUG_LL
UARTs, add an entry for your platform, and add an entry to
CONFIG_DEBUG_LL_INCLUDE that references
arch/arm/include/debug/<yoursoc>.S

I In arch/arm/include/debug/, implement the addruart,
senduart, waituart and busyuart assembly macros. On
many platforms (using 8250 compatible or the PL011 serial
IP), existing code can be re-used and only addruart needs to
be implemented.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 21/45



IRQ controller support

I If your platform uses the GIC or VIC interrupt controllers,
there are already drivers in arch/arm/common

I Otherwise, implement a new one in drivers/irqchip/

(rather new rule, most of them still leave in the
arch/arm/mach-<foo> directory).

I It must support the SPARSE_IRQ and irqdomain

mechanisms: no more fixed number of IRQs NR_IRQS: an IRQ
domain is dynamically allocated for each interrupt controller.

I It must support the MULTI_IRQ_HANDLER mechanism, where
your DT_MACHINE_START structure references the IRQ
controller handler through its ->handle_irq() field.

I In your DT_MACHINE_START structure, also call the
initialization function of your IRQ controller driver using the
->init_irq() field.

I Instantiated from your Device Tree .dtsi file.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 22/45



Timer driver

I Should be implemented in drivers/clocksource

I It must register
I A clocksource device, which using a free-running timer,

provides a way for the kernel to keep track of time passing.
See clocksource_mmio_init() if your timer value can be
read from a simple memory-mapped register, or
clocksource_register_hz() for a more generic solution.

I A clockevents device, which allows the kernel to program a
timer for one-shot or periodic events notified by an interrupt.
See clockevents_config_and_register()

I Driver must have a Device Tree binding, and the device be
instantiated from your Device Tree .dtsi file.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 23/45



Serial port driver

I These days, many ARM SoC use either a 8250-compatible
UART, or the PL011 UART controller from ARM. In both
cases, Linux already has a driver

I Just need to instantiate devices in your .dtsi file, and mark
those that are available on a particular board with
status = "okay" in the .dts file.

I If you have a custom UART controller, then get ready for
more fun. You’ll have to write a complete driver in
drivers/tty/serial

I A platform driver, with Device Tree binding, integrated with
the uart and console subsystems

I Maintainer is Alan Cox, also Cc Greg Kroah-Hartmann who
looks after the overall TTY layer.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 24/45



End of step 1

I At this point, your system should boot all the way to a shell

I You don’t have any storage device driver for now, but you can
boot into a minimal root filesystem embedded inside an
initramfs

I Time to submit your basic ARM SoC support. Don’t wait to
have all the drivers and all the features: submit something
minimal as soon as possible.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 25/45



Step 2: more core infrastructure

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 26/45



The clock framework

I A proper clock framework has been added in kernel 3.4,
released in May 2012

I Initially from Jeremy Kerr (Canonical), finally implemented
and merged by Mike Turquette (Texas Instruments)

I This framework:
I Implements the clk_get, clk_put, clk_prepare,

clk_unprepare, clk_enable, clk_disable, clk_get_rate,
etc. API for usage by device drivers

I Implements some basic clock drivers (fixed rate, gatable,
divider, fixed factor, etc.) and allows the implementation of
custom clock drivers using struct clk_hw and
struct clk_ops

I Allows to declare the available clocks and their association to
devices in the Device Tree (preferred) or statically in the
source code (old method)

I Provides a debugfs representation of the clock tree
I Is implemented in drivers/clk
I See Documentation/clk.txt

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 27/45



Clock framework, the driver side

From drivers/serial/tty/amba-pl011.c.
pl011_startup()

{

[...]

clk_prepare_enable(uap->clk);

uap->port.uartclk = clk_get_rate(uap->clk);

[...]

}

pl011_shutdown()

{

[...]

clk_disable_unprepare(uap->clk);

}

pl011_probe()

{

[...]

uap->clk = clk_get(&dev->dev, NULL);

[...]

}

pl011_remove()

{

[...]

clk_put(uap->clk);

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 28/45



Clock framework, declaration of clocks in DT

From arch/arm/boot/dts/highbank.dts

clocks {

#address-cells = <1>;

#size-cells = <0>;

osc: oscillator {

#clock-cells = <0>;

compatible = "fixed-clock";

clock-frequency = <33333000>;

};

[...]

emmcpll: emmcpll {

#clock-cells = <0>;

compatible = "calxeda,hb-pll-clock";

clocks = <&osc>;

reg = <0x10C>;

};

[...]

pclk: pclk {

#clock-cells = <0>;

compatible = "fixed-clock";

clock-frequency = <150000000>;

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 29/45



Clock framework, devices referencing their clocks

From arch/arm/boot/dts/highbank.dts

[...]

serial@fff36000 {

compatible = "arm,pl011", "arm,primecell";

reg = <0xfff36000 0x1000>;

interrupts = <0 20 4>;

clocks = <&pclk>;

clock-names = "apb_pclk";

};

[...]

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 30/45



Clock framework: summary

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 31/45



Introduction to pin muxing

I SoCs integrate many more peripherals than the number of
available pins allows to expose.

I Many of those pins are therefore multiplexed: they can either
be used as function A, or function B, or function C, or a GPIO

I Example of functions are:
I parallel LCD lines
I SDA/SCL lines for I2C busses
I MISO/MOSI/CLK lines for SPI
I RX/TX/CTS/DTS lines for UARTs

I This muxing is software-configurable, and depends on how
the SoC is used on each particular board

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 32/45



Pin muxing: principle

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 33/45



The old pin-muxing code

I Each ARM sub-architecture had its own pin-muxing code

I The API was specific to each sub-architecture

I Lot of similar functionality implemented in different ways

I The pin-muxing had to be done at the SoC level, and couldn’t
be requested by device drivers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 34/45



The new pin-muxing subsystem

I The new pinctrl subsystem aims at solving those problems

I Mainly developed and maintained by Linus Walleij, from
Linaro/ST-Ericsson

I Implemented in drivers/pinctrl

I Provides:
I An API to register pinctrl driver, i.e entities knowing the list of

pins, their functions, and how to configure them. Used by
SoC-specific drivers to expose pin-muxing capabilities.

I An API for device drivers to request the muxing of a certain
set of pins

I An interaction with the GPIO framework

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 35/45



The new pin-muxing subsystem: diagram

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 36/45



Declaring pin groups in the SoC dtsi

I From arch/arm/boot/dts/imx28.dtsi
I Declares the pinctrl device and various pin groups

pinctrl@80018000 {

#address-cells = <1>;

#size-cells = <0>;

compatible = "fsl,imx28-pinctrl", "simple-bus";

reg = <0x80018000 2000>;

duart_pins_a: duart@0 {

reg = <0>;

fsl,pinmux-ids = <0x3102 0x3112>;

fsl,drive-strength = <0>;

fsl,voltage = <1>;

fsl,pull-up = <0>;

};

duart_pins_b: duart@1 {

reg = <1>;

fsl,pinmux-ids = <0x3022 0x3032>;

fsl,drive-strength = <0>;

fsl,voltage = <1>;

fsl,pull-up = <0>;

};

mmc0_8bit_pins_a: mmc0-8bit@0 {

reg = <0>;

fsl,pinmux-ids = <0x2000 0x2010 0x2020

0x2030 0x2040 0x2050 0x2060

0x2070 0x2080 0x2090 0x20a0>;

fsl,drive-strength = <1>;

fsl,voltage = <1>;

fsl,pull-up = <1>;

};

mmc0_4bit_pins_a: mmc0-4bit@0 {

reg = <0>;

fsl,pinmux-ids = <0x2000 0x2010 0x2020

0x2030 0x2080 0x2090 0x20a0>;

fsl,drive-strength = <1>;

fsl,voltage = <1>;

fsl,pull-up = <1>;

};

mmc0_cd_cfg: mmc0-cd-cfg {

fsl,pinmux-ids = <0x2090>;

fsl,pull-up = <0>;

};

mmc0_sck_cfg: mmc0-sck-cfg {

fsl,pinmux-ids = <0x20a0>;

fsl,drive-strength = <2>;

fsl,pull-up = <0>;

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 37/45



Associating devices with pin groups, board dts

I From arch/arm/boot/dts/cfa10036.dts

apb@80000000 {

apbh@80000000 {

ssp0: ssp@80010000 {

compatible = "fsl,imx28-mmc";

pinctrl-names = "default";

pinctrl-0 = <&mmc0_4bit_pins_a

&mmc0_cd_cfg &mmc0_sck_cfg>;

bus-width = <4>;

status = "okay";

};

};

apbx@80040000 {

duart: serial@80074000 {

pinctrl-names = "default";

pinctrl-0 = <&duart_pins_b>;

status = "okay";

};

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 38/45



Device drivers requesting pin muxing

I From drivers/mmc/host/mxs-mmc.c

static int mxs_mmc_probe(struct platform_device *pdev)

{

[...]

pinctrl = devm_pinctrl_get_select_default(&pdev->dev);

if (IS_ERR(pinctrl)) {

ret = PTR_ERR(pinctrl);

goto out_mmc_free;

}

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 39/45



GPIO

The GPIO subsystem has been around for quite some time now,
only a few things have evolved recently:

I All GPIO drivers, including drivers for GPIO controllers
internal to the SoC must be in drivers/gpio

I If the GPIO pins are muxed, the driver must interact with the
pinctrl subsystem to get the proper muxing:
pinctrl_request_gpio() and pinctrl_free_gpio().

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 40/45



Step 3: more drivers, advanced features

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 41/45



Device drivers

On the device driver side, not much has changed, except:
I Each device driver must have a device tree binding

I A binding describes the compatible string and the properties
that a DT node instantiating the device must carry.

I The binding must be documented in
Documentation/devicetree/bindings

I The drivers are no longer allows to include
<mach/something.h>, due to multiplatform kernel support.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 42/45



Finding good examples

As things are moving quickly, not all ARM sub-architecture comply
with the current best practices. The following recent ones are good
starting points:

I arch/arm/mach-highbank

I arch/arm/mach-socfpga

I arch/arm/mach-bcm2835

I arch/arm/mach-mxs

I arch/arm/mach-mvebu

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 43/45



Conclusion

I The code in the arch/arm tree has changed significantly over
the last two years

I These changes allow the usage of more generic and common
infrastructures and less SoC-specific code, which can only be
a good thing

I However, the best practices are quickly evolving: requires a
constant reading of the Linux ARM Kernel mailing-list
discussion to stay aware of most recent changes.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 44/45



Questions?

Thomas Petazzoni

thomas.petazzoni@free-electrons.com

Thanks to Grégory Clement (Free Electrons, working with me on
Marvell mainlining), Lior Amsalem and Maen Suleiman (Marvell)

Slides under CC-BY-SA 3.0.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 45/45


