Optimization Techniques For Maximizing
Application Performance on Multi-Core
Processors

Kittur Ganesh

1 04/14/06 n t lo)
Copyright © 2006, Intel Corporation. All rights reserved. l n e

*Qther brands and names are the property of their respective
owners

Agenda

e VLItIi-core processors — Overview
o Paralelism— inpact on muiti-core?
e Qpiimzation techniques

e OS Suppart/ SWitods

o SUMMAY

2 04/14/06

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
oooooo

Multi-Core Processors - Overview

OOOOOO

What are nulti-core processors?
— Integrated aircutt (IC) chips containing nore than one icentical physical
processar (care) inthe sare IC package. OS percalves each care as a
discrete processar.

— Each core has its onn condlete set of resources, and may share the
ondie cache layers

— Cores may have on-die communication peth to front-sice bus (FSB)

— \\hat is amuiti processar?

04/14/06 - t l® '
pyright © 2006, Intel Corporation. All rights reserved. In e
brands and names are the property eir respective

Multi-Core Processors - Overview

o VLIti-core architecture enaldles divide-and-conguer” Strategy to
performmore wark in agiven clock cyde.

o Cores enable threadHevel paraldism (mutiple instructions /
threads per dock cyde)

o Minmzes perfonmance stalls, with a crantic increase in overall
effective system perfomance

o Greater EHHP (energy efficent perfomance) and scalahility

4 04/14/06 u t l® ’
Copyright © 2006 , Intel Corporation. All rights reserved . In e
*Other brands and names are the property of their respective

OOOOOO

A Dual-core Intel Processor (example)

® Two physical cores in a package
e Fach with its own L1 cache

e Each with its own execution
resources

® Both cores share the L2 cache

Two Actual Processor Cores

FP Unit FP Unit

EXE Core EXE Core

L1 Cache L1 Cache
L2 Cache

® Truly parallel multi-tasking and threaded

execution. Increased throughput.

5 04/14/06

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
oooooo

Multi-core Processors - Overview

4 A
TODAY 2H06

Great EEP!
(Energqgy; Efficient
Performance)

Over 2X
performance*

Driven, By: Dual Core, Balanced
Platform. Performance and Lower Power
Cores

6 04/14/06 CPUdies not to scale

n ®
Copyright © 2006, Intel Corporation. All rights reserved. *\s. 64bit Intel® Xeon™ mb&ddﬁfmn($d|\/ay’(5) I n te':

*Qther brands and names are the property of their respective
owners

Parallelism

e Poner / inpact on Muiti-care

* Key conoepts

— Processes/ Threads

— Threading — when, why and how?
— Functional Deconpaosition

— Data Deconposition

— Shared Menory Parallelism

— Keysto pardlelism

7 04/14/06

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
oooooo

Parallelism

e Poner / Impact on Multi-core

— Parallelismis the ahlity to process multiple instructions, threads or jobs
sinutaneously per dock cyde, drametically inproving overal
performance

— IVUti cores allowfull patential for parallelism An andlyst likened thisto
designing autos with multiple cylinders, each running at optinal power
effidency.

— Great Bnergy Eficent Performance, and scalallity.

8 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. In e
*Other brands and names are the property eir respective

OOOOOO

Parallelism - Processes/Threads

® Modern operating systems
load programs as processes

- Resource holder
- Execution

® A process starts executing at
its entry point as a thread

threed --- thread

® Threads can create other
threads within the process

e All threads within a process
share code & data segments

9 04/14/06 n te|®>
Copyright © 2006, Intel Corporation. All rights reserved. I n

*Qther brands and names are the property of their respective
oooooo

Parallelism - Threading: When, Why,
How

¢ When to thread?
- Independent tasks that can execute concurrently

e Why thread?

- Turnaround or Throughput

® How to thread?
- Functionality or Performance

e How to define independent tasks?
- Task or Data decomposition

10 04/14/06 in/tGD

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
oooooo

Functional /Data Decomposition

Qpen DB's Address Book

Concurrent Tasks

Cpen Hie Bt Spell Check

-

— ¢§ — ‘fl\g —> K Sequential Tasks

11 04/14/06 intel@’
Copyright © 2006, Intel Corporation. All rights reserved.
*Qther brands and names are the property of their respective

OOOOOO

Shared Memory Parallelism

e Multiple threads:
- Executing concurrently
- Sharing a single address space
- Sharing work in coordinated fashion

- Scheduling handled by OS

® Requires a system that provides shared
memory and multiple CPUs

12 04/14/06

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
oooooo

Keys to Parallelism

® |dentify concurrent work.
e Spread work evenly among workers

® Create private copies

of commonly used resources. &

® Synchronize access to costly or
unique shared resources.

13 04/14/06

Copyright © 2006, Intel Corporation. All rights reserved.
*Qther brands and names are the property of their respective
owners

Amdahl’s Law - Theoretical Maximum
Speedup of parallel execution

® sp eeduPC =1/ (P{N + S)

- P (parallel code fraction) S (serial code fraction) N (processors)

e Example: Image processing
- 30 minutes of preparation (serial)

- One minute to scan a region Number of | Time Speedup
— 30 minutes of cleanup (serial) | P©°**°"
1 30 + 300 + 30 = 360 | 1.0X
2 30 + 150 + 30 = 210 | 1.7X
100 30+3+30= 63 5.7X
Infinite 30+0+30= 60]6.0X

® Speedup is restricted by serial portion. And, speedup increases
with greater number of cores!

14 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. I n e

*Qther brands and names are the property of their respective
owners

Power of parallelism - seen in Intel
Processors

AS = Architecture State (registers, flags, timestanp courter, etc.)
APIC=Advanced Programmeble Interrupt Gontrdller
PER =Processor Execution Resources (execution units, instruction decode, €tc.)

» Software optimized for DPwill performwell an HiF Technology and Dual-Core

« [VLitithreading IS reguired for neximizing application performmance

» Sgle threaded apps wWill net run faster but benefit while multitasking (running nultiple single threacked
apps)

15 04/14/06 a t l" ’
Copyright © 2006, Intel Corporation. All rights reserved. ‘ l n e

*Qther brands and names are the property of their respective
owners

Parallelism: machine code execution
[Out-of-order execution engine in Duo Core]

sequentia machine
code

Execution
. Pipe (Engine)

' HW

Sequential events loaded into the execution pipe
cannot be executed in parallel due to dependencies

Next_|
Hrst—>|

Instructions are sequential, most
instructions depend on conpletion
of the previous instructions

Run time reordering can overcome the dependencies by
changing the execution sequence and enable more
paralldism

16 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. I n e

*Qther brands and names are the property of their respective
owners

Optimization Techniques

® Multi-core processor implementation (inherent
parallelism) has significant impact on software
applications

- Full potential harnessed by programs that
migrate to a threaded software model

- Efficient use of threads (kernel or system / user
threads) is KEY to dramatically increase effective
system performance

17 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. In e

*Other brands and names are the property of their respective
oooooo

Threaded Software Model

e Explicit Threads
- Thread Libraries
POSIX* threads
Win32* API
- Message Passing Interface (MPI)

e Compiler Directed Threads
- OpenMP* (portable shared memory parallelism)
- Auto-parallelization

18 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. In e
*Other brands and names are the property eir respective

OOOOOO

POSIX* threads

e POSIX.1c standard
e C Language Interface
® Threads exist within the same process

e All threads are peers
- No explicit parent-child model
- Exception: main()

19 04/14/06

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
oooooo

Creating POSIX* Threads

int pthread_create (
pthread_t* handle,
const pthread_attr_t* attributes,

void *(*function) (void *),
void* arg);

® Function(s) are explicitly mapped to created
thread

e Thread handle - holds all related data on
created thread.

20 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. In e

*Other brands and names are the property of their respective
oooooo

POSIX* threads - example

#include <stdio.h>
#include <pthread.h>

#define NTHREADS 4

void test(void *arg) {printf (“Hello, world\n”);}

int main(int argc, char *argv[])

{

pthread_t h[NTHREADS];

for (int i=0; i<NTHREADS; i++)
pthread_create (&hl[i], NULL, (void *)test, NULL);

21 04/14/06

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
oooooo

Message Passing Interface (MPI)

e Message Passing Interface (MPI) is a message
passing library standard (based on MPI
Forum,

e All parallelism is explicit.

e Supports SMP/Workstation Clusters /
heterogeneous networks

22 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. In e

*Other brands and names are the property of their respective
oooooo

MPI - example

#include "mpi.h"
#include <stdio.h>

int main(argc,argv)

int argc;

char *argvl]; {
int numtasks, rank, rc;
rc = MPI_Init(&argc,&argv);
if (rc '= MPI_SUCCESS) {

printf ("Error starting MPI program. Terminating.\n");
MPI_Abort(MPI_COMM_WORLD, rc);
}
MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
printf ("Number of tasks= %d My rank= %d\n", numtasks,rank);

MPI_Finalize();

23 04/14/06

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
oooooo

OpenMP* [www.openmp.org]

An Application Program Interface (API) for multi-
threaded, shared memory parallelism

e Portable
- API for Fortran 77, Fortran 90, C, and C++, on all

architectures, including Unix* and Windows*

e Standardized
- Jointly developed by major SW/HW vendors.

- Standardizes the last 15 years of symmetric multi-
processing (SMP) experience

e Major APl components
- Compiler Directives
- Runtime Library Routines

24 04/14/06

Conmai © 200 EYYATOHMETL.Variables

OOOOOO

OpenMP* Programming Model

e Thread Based Parallelism
- A multi-threaded shared memory process
e Explicit Parallelism

- OpenMP is an Explicit (not automatic) programming model
- Programmer has full control over parallelization

e Fork-Join Model

- Uses fork-join model of parallel execution

e Compiler Directive Based

- All of OpenMP parallelism is specified through compiler
directives imbedded in code.

e Nested Parallelism Support
e Dynamic Threads

25 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. In e

*Other brands and names are the property of their respective
oooooo

Fork - Join Parallelism

« Wesier hreac spawns ateamof threadss as needed

e Pardlelismis added incrementally: 1.e., the sequentid programevolves
Into a paralel program

/

Vbster
Thread t

Parallel Regions

26 04/14/06

Copyright © 2006, Intel Corporation. All rights reserved.
*Qther brands and names are the property of their respective
owners

OpenMP* Pragma Syntax

Most constructs in OpenMP* are compiler
directives or pragmas.

e For C and C++, the pragmas take the form:
#pragma omp construct [clause [clause]...]

e For Fortran, the directives take the form:
ISOMP CONSTRUCT [CLAUSE [CLAUSE]...]

27 04/14/06 n t |®>
Copyright © 2006 , Intel Corporation. All rights reserved . I n e
*Other brands and names are the property of their respective T T— e dIL (ﬂtﬂdaﬂ'minﬂ\e

OOOOOO United States or ather courtries.

OpenMP* - parallel region specification

e Defines parallel region over structured
block of code

® Threads are created as “parallel” pragma
is crossed

® Threads block at end of region
e Data is shared among threads unless
specified otherwise

CCH:
#Horagma onp paralle
{
0 [00¢
}

28 04/14/06 'ntelﬁ’)
Copyright © 2006, Intel Corporation. All rights reserved. I
Intel and the Intel logo are trademarks or registered trademerks of |

*Qther brands and names are the property of their respective
owners

Subsidariesinthe
United States or ather courtries.

OpenMP* - Example [Prime Number Gen.]

bool TestForPrine(int val)

® Serial Exec. { /] let’s start checking from3

int limt, factor = 3;
s CAWINDOWS\system3 2icmd. exe

i factor

;2 C:\classfiles\PrimeSingle\Release>PrimeSingle_exe 1 20

2 160%
23
2

23 void FindPrines(int start, int end)

234

& primes found between 1 and 20 in 0.00 secs

C:yclassfiles\PrimeSingle\Release>_

for(int i = start; i <=-end; i+= 2){
2 i f(TestForPrime(i))
234 gl obal Pri nes[gPri nesFound++] = 1;
234 ShowPr ogress(i, range);

29 04/14/06 n t |@>
Copyright © 2006, Intel Corporation. All rights reserved. I n e

*Qther brands and names are the property of their respective
owners

OpenMP* - Example [Prime Number Gen.]
-> With OpenMP*

#pragma omp darallel for

for(int "= start; i'\k= end:; i+=2)

'orPrime(i)) Defined by the
for loop
globaIPrimncrmDr"mncEnl|v'|d_|_+] — |,
Create threads here for
ShowProdiat e e ir=Re=sTas

e CAWINDOWS\system32\cmd.exe

C:\classfiles\PrimeOpenHP\Debug>PrimelpenMP . exe 1 SAEE0GO
0%
348018 primes found between 1 and 5000008 in 8.36 secs

C:yclassfiles\PrimeOpenHP\Debug>_

30 04/14/06 n t |@>
Copyright © 2006, Intel Corporation. All rights reserved. I n e

*Qther brands and names are the property of their respective
owners

Auto-parallelism
e Auto-parallelism is implicit parallelism.

® The compiler will do automatic threading of loops and
other structures, without having to manually insert
OpenMP* directives.

® Focus is on loop unrolling and splitting. Loops whose trip
counts are known can be parallelized, and no loop

carried dependencies exists (read after write, write after
read).

NOTE: A loop carried dependence occurs when same
memory location is referenced in different iterations of
the loop.

31 04/14/06

n ®
Copyright © 2006, Intel Corporation. All rights reserved. ‘ I n tel:

*Other brands and names are the property of their respective
oooooo

Auto-parallelism - Example

for (i=1; i<100; i++) // Thread 1
{ for (i=1; i<50; i++)

}

ali] = a[i] + bli] * c[il; {
}

/] Thread 2
Auto-parallelize {Or (i=50; i<100; i++)

ali] = alil + bl[i] * c[i];

ali] = a[il + b[i] * c[il;

}

32 04/14/06

Copyright © 2006, Intel Corporation. All rights reserved.
*Qther brands and names are the property of their respective

OOOOOO

Threading Issues To Deal With

e Data Races
- Concurrent access of same variable by multiple threads

® Synchronization
- Share data access must be coordinated

e Thread Stalls

- Threads wait indefinitely due to dangling locks

e Dead Locks

- Indefinite wait for resources, caused by locking hierarchy in
threads

® False Sharing
- Threads writing different data on the same cache line

33 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. In e

*Other brands and names are the property of their respective
oooooo

False Sharing - Memory conflict

m m
e Data elements from multiple

threads lie on same cache line

e Could cause problem even if

threads are not accessing same
memory location N T T TTTTITTTTT]

Al ENEEER
HINEEEEEEEENEEEN

34 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. In e

*Other brands and names are the property of their respective
oooooo

Common Performance Issues

e Parallel Overhead

- Due to thread creation, scheduling

e Synchronization

- Excessive use of global data, contention for the same synchronization object

e Load Imbalance

- Improper distribution of parallel work

e Granularity

- No sufficient parallel work

35 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. In e

*Other brands and names are the property of their respective
oooooo

Parallel Overhead

® Thread Creation overhead

- Overhead increases rapidly as the number of active threads
Increases

e Solution

- Use of re-usable threads and thread pools
Amortizes the cost of thread creation
Keeps number of active threads relatively constant

36 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. In e

*Other brands and names are the property of their respective
oooooo

Synchronization

® Heap contention

- Allocation from heap causes implicit synchronization
- Allocate on stack or use thread local storage

e Atomic updates versus critical sections

- Some global data updates can use atomic operations
- Use atomic updates whenever possible

® Critical Sections vs. Mutual Exclusion API

- Use CRITICAL SECTION objects when visibility across process
boundaries is not required

- Introduces lesser overhead

37 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. In e

*Other brands and names are the property of their respective
oooooo

Threading tools

® Thread Checker tools

- Can be used to help debug for correctness of
threaded applications

- Can pin-point notorious threading bugs like data
races, thread stalls, deadlocks etc.

e Thread Profiler tools

- Used for performance tuning to maximize code
performance

- Can pinpoint performance bottlenecks in threaded
applications like load imbalance, granularity, load
imbalance and synchronization

38 04/14/06 a t l® ’
Copyright © 2006, Intel Corporation. All rights reserved. ‘ In e

*Other brands and names are the property of their respective
oooooo

Example Thread Checker tool: Intel® Thread
Checker

Prirme.

1
; 1
Frim re GetCommandLineArguments 1
Frim 8 1 main 1

1

P)
[y -

Frim Thread_0 I mainCRTStartup T] '
Prine. exe Thread_0 kvars| THiSISthe levd inthe B
Prim

Prim o ; call tree wherewe neced Iil 'IE"E"EI

Identifies time consuming region — finds proper levd in
cal-treetothread

39 04/14/06 .

Copyright © 2006, Intel Corporation. All rights reserved. I n tel
*Other brands and names are the property of their respective
owners

Example Thread Checker tool: Intel® Thread
Checker

Analysis

® Where to thread?
— FindPri nes()

e |s it worth threading a selected region?

- Appears to have minimal dependencies
- Appears to be data-parallel
- Consumes over 95% of the run time

40 04/14/06

Copyright © 2006, Intel Corporation. All rights reserved.
*Qther brands and names are the property of their respective
oooooo

Prime0pentP.cpp - Thread Checker - Activity: |
[]

Frime2pentP.cop - Thread Checker - Activity:

|
g

| 1st Aocess |v| |@QRB|¢3&|&'@|‘“§%|

Location of the first thread that iddress |Line
waz executing at the time the
conflict occured Ox111cC 71 3

Stack: 72 . .)
?ShowPrugress.@@YﬂXHH(; e 73 ‘{!Dld 3howProgress| int wal, int range |
"PrimelpentdP. cpp': 77

[Frime0penMP.exe, 021374] —
PFindPrimesEEty A HHEE —

"Prime0pentdP.cpp'112 O] 77 O0E] gProgress++:
[Frime0penkP exe, Ox129d]
PFindPrimes. @@ AHHEE Ox1374h percentbone = (int) [(float)gProgress/ (float)range %Z00.0f + 0.5L);
"PrimedpentdP.cpp': 106
[Frime0penkdP exe, 0x119c] 0x13E3 if{ percentbone % 10 == 0)

0x13DF printf (™ibibibhb%3d%%™, percentDone);

4 I . 1Ll

([_znbooess] REBR| L[4 V|5

Location of the second thread rddress |Line
that was executing at the time the Q
Ox111C -1)

conflict occured
TE

Shack:
73 vold ShowProgressi(int wal, int range |
ShowP) e HHL
owProgress. @@ 2N ox13en 74 {

"PrimelpentP.cpp': 77) _
[FrimeOpenMF.exe, 0x1374] — 75 int pereenthone = O;
FindPrimes@ETAXHHES_ L
"PrimedpentdP.cpp:112 013 6E i B gProgress++;
[Frime0pentP.exe, 0x129d]
PFindPrimes. [EEY AxHHEE Ox137Lh percentDone = (int) {(float)gProgress/ (float)range *Z00.0f + 0.5f) ;
"PrimelpentP.cpp': 106
[Frime0pentP.exe, 0x119c] Ox13E3 if{ percentbone % 10 == 0)

0x13DF printf (™hbYybibYvb%3d4%%"™, percentDone):;

Jource

int percentDone = 0O:

U WLIOIAL T AIURILLIOS] @010

-

Diagnusticsl Stack Traces Source View I
Ll

Diagnostics | Stack Tracesl Source ‘Jiewl
4706

Copyright © 2006, Intel Corporation. All rights reserved.
*Qther brands and names are the property of their respective
owners

Example Thread Profiler tool: Intel® Thread
Profiler for OpenMP

Reterence Run: AD: TMOpenMPiguide-01a.gvs [CAclaylclassfiles\LinuxiThi =

YWhole Program

ElE% &
2 B « B @ 2

Hide Lacale Back wanirl Refrezh Home

Carkerts |Ij:|-:IE:1 i Seach| F:

Perdormance Analyzer
Linz =]

Speedup Graph estimates threading speedup and potential speedup
based on Amdahl’s Law

42 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. I n e

*Qther brands and names are the property of their respective
owners

Memory Caching / Performance on multi-core
systems

® To maximize software performance on multi-core
systems, core configurations and memory cache
design has to be considered.

® Process resources are shared by threads, and
synchronized for data access.

® Multi-core processors share caches, and processor
maintains cache coherency

® Cache Memory, and System Memory contains
replicated data, and data state is monitored by Cache
HW. Cache lines are used for data transfer

43 04/14/06 n t |®>
Copyright © 2006, Intel Corporation. All rights reserved. ‘ In e

*Other brands and names are the property of their respective
oooooo

Memory Caching - Considerations for
maximizing Performance

e Use locking primitives to get true sharing of data
between threads, with data synchronization

e Keep few active threads to access data area
® Replicate data copies for use by multi-threads

® Threads feedback data to single thread for updating the
shared data

® Create threads sharing data on cores that share cache.
Use processor affinity to assign tasks to cores.

® False sharing can degrade performance, so organize
data efficiently

44 04/14/06 a t l® ’
Copyright © 2006, Intel Corporation. All rights reserved. In e

*Other brands and names are the property of their respective
oooooo

OS Support / SW tools

e LINUX* 2.6.16 Kernels have complete support for
multi-core (detects cores and enables them), and
2.6.16 -mm tree has multi-core scheduler
optimizations too

e Intel® C++ Compiler for Linux*, / Windows*

- Supports OpenMP*, Auto-parallelism, designed to support and optimize for
dual-core and multi-core processors

e Intel® Thread Checker

- Pinpoints notorious threading bugs like data races, stalls, and deadlocks

e Intel® Thread Profiler

- ldentifies performance issues in threaded applications, and pinpoints
performance bottle-necks affecting execution time

e Intel® VTune Performance Analyzer
- ldentifies and characterizes performance issues.

45 04/14/06 in/tGD

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
oooooo

Summary

e Multi-Core processors enable true thread level parallelism with
great Energy Efficient Performance, and Scalability

® To utilize the full potential of multi-core processors, SW
applications will need to move from a single to a multi-threaded
model.

e Optimization techniques like OpenMP*, Auto-parallelization,
cache coherency are key to maximizing performance

e A SW application should not just be threaded, but should be
designed to be a well-threaded application for maximizing
performance on multi-core processors.

Unleash the power of multi-corée!

46 04/14/06 in/teD

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
oooooo

47 04/14/06

Copyright © 2006, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective
owners

BACK-UP

