
04/14/061

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Optimization Techniques For Maximizing
Application Performance on Multi-Core
Processors

Kittur Ganesh

04/14/062

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Agenda

• Multi-core processors – Overview

• Parallelism – impact on multi-core?

• Optimization techniques

• OS Support / SW tools

• Summary

04/14/063

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Multi-Core Processors - Overview

• What are multi-core processors?
– Integrated circuit (IC) chips containing more than one identical physical

processor (core) in the same IC package. OS perceives each core as a
discrete processor.

– Each core has its own complete set of resources, and may share the
on-die cache layers

– Cores may have on-die communication path to front-side bus (FSB)

– What is a multi processor?

04/14/064

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Multi-Core Processors - Overview

• Multi-core architecture enables divide-and-conquer” strategy to
perform more work in a given clock cycle.

• Cores enable thread-level parallelism (multiple instructions /
threads per clock cycle)

• Minimizes performance stalls, with a dramatic increase in overall
effective system performance

• Greater EEP (energy efficient performance) and scalability

04/14/065

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

• Two physical cores in a package

• Each with its own L1 cache

• Each with its own execution
 resources

• Both cores share the L2 cache

• Truly parallel multi-tasking and threaded
execution. Increased throughput.

A Dual-core Intel Processor (example)

Two Actual Processor CoresTwo Actual Processor Cores

EXE Core

FP Unit

EXE Core

FP Unit

L2 Cache

L1 Cache L1 Cache

System Bus
 (667MHz, 5333MB/s)

04/14/066

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Multi-core Processors - Overview

CPU dies not to scale

TODAYTODAY

Perfo
rmance

Pe
rfo

rm
an

ce
 / W

att

Over 2XOver 2X
performance*performance*

Great EEP! Great EEP!
(Energy Efficient (Energy Efficient

Performance)Performance)

* vs. 64bit Intel® Xeon™ Processor based platform (as of May ’05)

Driven By Dual Core, BalancedDriven By Dual Core, Balanced
Platform Performance and Lower Power Platform Performance and Lower Power

CoresCores

2H’062H’06

04/14/067

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Parallelism

• Power / impact on Multi-core

• Key concepts

– Processes / Threads
– Threading – when, why and how?
– Functional Decomposition
– Data Decomposition
– Shared Memory Parallelism
– Keys to parallelism

04/14/068

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Parallelism

• Power / Impact on Multi-core

– Parallelism is the ability to process multiple instructions, threads or jobs
simultaneously per clock cycle, dramatically improving overall
performance

– Multi cores allow full potential for parallelism. An analyst likened this to
designing autos with multiple cylinders, each running at optimal power
efficiency.

– Great Energy Efficient Performance, and scalability.

04/14/069

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Parallelism – Processes/Threads

• Modern operating systems
load programs as processes

– Resource holder
– Execution

• A process starts executing at
its entry point as a thread

• Threads can create other
threads within the process

• All threads within a process
share code & data segments

Code segment

Data segment

thread
main()

…thread thread

04/14/0610

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Parallelism – Threading: When, Why,
How

• When to thread?
– Independent tasks that can execute concurrently

• Why thread?
– Turnaround or Throughput

• How to thread?
– Functionality or Performance

• How to define independent tasks?
– Task or Data decomposition

04/14/0611

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Open DB’s Address Book Open DB’s Address Book

InBox CalendarInBox Calendar

Functional/Data Decomposition

Open FileOpen File Edit Spell Check Edit Spell Check

Concurrent Tasks

Sequential Tasks

04/14/0612

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Shared Memory Parallelism

• Multiple threads:
– Executing concurrently
– Sharing a single address space
– Sharing work in coordinated fashion
– Scheduling handled by OS

• Requires a system that provides shared
 memory and multiple CPUs

04/14/0613

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Keys to Parallelism

• Identify concurrent work.

• Spread work evenly among workers.

• Create private copies
of commonly used resources.

• Synchronize access to costly or
unique shared resources.

04/14/0614

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

• speedup = 1/(P/N + S)
– P (parallel code fraction) S (serial code fraction) N (processors)

• Example: Image processing
– 30 minutes of preparation (serial)
– One minute to scan a region
– 30 minutes of cleanup (serial)

• Speedup is restricted by serial portion. And, speedup increases
with greater number of cores!

Amdahl’s Law - Theoretical Maximum
Speedup of parallel execution

04/14/0615

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Multiprocessor (DP)

PERPER

ASAS
APICAPIC

AS = Architecture State (registers, flags, timestamp counter, etc.)
APIC = Advanced Programmable Interrupt Controller
PER = Processor Execution Resources (execution units, instruction decode, etc.)

PERPER

ASAS
APICAPIC

 HT Technology

ASAS
APICAPIC

ASAS
APICAPIC

PERPER

Dual-Core

ASAS
APICAPIC

PERPER PERPER

ASAS
APICAPIC

Power of parallelism - seen in Intel
Processors

• Software optimized for DP will perform well on HT Technology and Dual-Core Software optimized for DP will perform well on HT Technology and Dual-Core
• Multithreading is required for maximizing application performanceMultithreading is required for maximizing application performance
• Single threaded apps will not run faster but benefit while multitasking (running multiple single threaded Single threaded apps will not run faster but benefit while multitasking (running multiple single threaded
apps)apps)

04/14/0616

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

sequential machine
code

Instructions are sequential, most
instructions depend on completion
of the previous instructions

Execution
Pipe (Engine)

First
Next Sequential events loaded into the execution pipe

cannot be executed in parallel due to dependencies

Run time reordering can overcome the dependencies by
changing the execution sequence and enable more
parallelism

Parallelism: machine code execution
 [Out-of-order execution engine in Duo Core]

04/14/0617

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Optimization Techniques

• Multi-core processor implementation (inherent
parallelism) has significant impact on software
applications

– Full potential harnessed by programs that
migrate to a threaded software model

– Efficient use of threads (kernel or system / user
threads) is KEY to dramatically increase effective
system performance

04/14/0618

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Threaded Software Model

• Explicit Threads
– Thread Libraries

 POSIX* threads
 Win32* API

– Message Passing Interface (MPI)

• Compiler Directed Threads
– OpenMP* (portable shared memory parallelism)
– Auto-parallelization

04/14/0619

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

POSIX* threads

• POSIX.1c standard

• C Language Interface

• Threads exist within the same process

• All threads are peers
– No explicit parent-child model
– Exception: main()

04/14/0620

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Creating POSIX* Threads

• Function(s) are explicitly mapped to created
thread

• Thread handle – holds all related data on
created thread.

int pthread_create (
pthread_t* handle,
const pthread_attr_t* attributes,
void *(*function) (void *),

 void* arg);

04/14/0621

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

POSIX* threads – example

#include <stdio.h>
#include <pthread.h>

#define NTHREADS 4

 void test(void *arg) {printf (“Hello, world\n”);}

 int main(int argc, char *argv[])
 {

 pthread_t h[NTHREADS];

 for (int i=0; i<NTHREADS; i++)
 pthread_create (&h[i], NULL, (void *)test, NULL);
 }

04/14/0622

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Message Passing Interface (MPI)

• Message Passing Interface (MPI) is a message
passing library standard (based on MPI
Forum)

• All parallelism is explicit.

• Supports SMP/Workstation Clusters /
heterogeneous networks

04/14/0623

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

MPI – example

#include "mpi.h"
#include <stdio.h>

int main(argc,argv)
int argc;
char *argv[]; {
 int numtasks, rank, rc;
 rc = MPI_Init(&argc,&argv);
 if (rc != MPI_SUCCESS) {
 printf ("Error starting MPI program. Terminating.\n");
 MPI_Abort(MPI_COMM_WORLD, rc);
 }
 MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
 MPI_Comm_rank(MPI_COMM_WORLD,&rank);
 printf ("Number of tasks= %d My rank= %d\n", numtasks,rank);
 /******* do some work *******/
 MPI_Finalize();
}

04/14/0624

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

OpenMP* [www.openmp.org]

An Application Program Interface (API) for multi-
threaded, shared memory parallelism
• Portable

– API for Fortran 77, Fortran 90, C, and C++, on all

 architectures, including Unix* and Windows*

• Standardized
– Jointly developed by major SW/HW vendors.
– Standardizes the last 15 years of symmetric multi-

processing (SMP) experience

• Major API components
– Compiler Directives
– Runtime Library Routines
– Environment Variables

04/14/0625

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

OpenMP* Programming Model

• Thread Based Parallelism
– A multi-threaded shared memory process

• Explicit Parallelism
– OpenMP is an Explicit (not automatic) programming model
– Programmer has full control over parallelization

• Fork-Join Model
– Uses fork-join model of parallel execution

• Compiler Directive Based
– All of OpenMP parallelism is specified through compiler

directives imbedded in code.

• Nested Parallelism Support
• Dynamic Threads

04/14/0626

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

• Master thread spawns a team of threads as needed

• Parallelism is added incrementally: i.e., the sequential program evolves
into a parallel program

Fork – Join Parallelism

Parallel Regions

Master
Thread

04/14/0627

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

OpenMP* Pragma Syntax

Most constructs in OpenMP* are compiler
directives or pragmas.

• For C and C++, the pragmas take the form:
#pragma omp construct [clause [clause]…]

• For Fortran, the directives take the form:
!$OMP CONSTRUCT [CLAUSE [CLAUSE]…]

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States or other countries.

04/14/0628

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

C/C++ :
#pragma omp parallel

{
block

}

#pragma omp parallel

Thread

1
Thread

2
Thread

3

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States or other countries.

OpenMP* - parallel region specification

• Defines parallel region over structured
block of code
• Threads are created as “parallel” pragma
is crossed
• Threads block at end of region
• Data is shared among threads unless
specified otherwise

04/14/0629

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

OpenMP* - Example [Prime Number Gen.]

bool TestForPrime(int val)
{ // let’s start checking from 3
 int limit, factor = 3;
 limit = (long)(sqrtf((float)val)+0.5f);
 while((factor <= limit) && (val % factor))
 factor ++;

 return (factor > limit);
}

void FindPrimes(int start, int end)
{
 int range = end - start + 1;
 for(int i = start; i <= end; i += 2)
 {
 if(TestForPrime(i))
 globalPrimes[gPrimesFound++] = i;
 ShowProgress(i, range);
 }
}

 for(int i = start; i <= end; i+= 2){
 if(TestForPrime(i))
 globalPrimes[gPrimesFound++] = i;
 ShowProgress(i, range);
 }

i factor

 3 2
 5 2
 7 2 3
 9 2 3
11 2 3
13 2 3 4
15 2 3
17 2 3 4
19 2 3 4

• Serial Exec.

04/14/0630

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

OpenMP* - Example [Prime Number Gen.]
 -> With OpenMP*

#pragma omp parallel for

 for(int i = start; i <= end; i+= 2){

 if(TestForPrime(i))

 globalPrimes[gPrimesFound++] = i;

 ShowProgress(i, range);

 }

OpenMP

Create threads here for
this parallel region

Defined by the
forfor loop

04/14/0631

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Auto-parallelism
• Auto-parallelism is implicit parallelism.

• The compiler will do automatic threading of loops and
other structures, without having to manually insert
OpenMP* directives.

• Focus is on loop unrolling and splitting. Loops whose trip
counts are known can be parallelized, and no loop
carried dependencies exists (read after write, write after
read).

 NOTE: A loop carried dependence occurs when same
memory location is referenced in different iterations of
the loop.

04/14/0632

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Auto-parallelism - Example

for (i=1; i<100; i++)
{
 a[i] = a[i] + b[i] * c[i];
}

// Thread 1
for (i=1; i<50; i++)
{
 a[i] = a[i] + b[i] * c[i];
}

// Thread 2
for (i=50; i<100; i++)
{
 a[i] = a[i] + b[i] * c[i];
}

Auto-parallelize

04/14/0633

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Threading Issues To Deal With
• Data Races

– Concurrent access of same variable by multiple threads

• Synchronization
– Share data access must be coordinated

• Thread Stalls
– Threads wait indefinitely due to dangling locks

• Dead Locks
– Indefinite wait for resources, caused by locking hierarchy in

threads

• False Sharing
– Threads writing different data on the same cache line

04/14/0634

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

False Sharing – Memory conflict

• Data elements from multiple
threads lie on same cache line

• Could cause problem even if
threads are not accessing same
memory location

04/14/0635

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Common Performance Issues

• Parallel Overhead
– Due to thread creation, scheduling

• Synchronization
– Excessive use of global data, contention for the same synchronization object

• Load Imbalance
– Improper distribution of parallel work

• Granularity
– No sufficient parallel work

04/14/0636

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Parallel Overhead

• Thread Creation overhead
– Overhead increases rapidly as the number of active threads

increases

• Solution
– Use of re-usable threads and thread pools

 Amortizes the cost of thread creation
 Keeps number of active threads relatively constant

04/14/0637

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Synchronization

• Heap contention
– Allocation from heap causes implicit synchronization
– Allocate on stack or use thread local storage

• Atomic updates versus critical sections
– Some global data updates can use atomic operations
– Use atomic updates whenever possible

• Critical Sections vs. Mutual Exclusion API
– Use CRITICAL SECTION objects when visibility across process

boundaries is not required
– Introduces lesser overhead

04/14/0638

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Threading tools

• Thread Checker tools
– Can be used to help debug for correctness of

threaded applications
– Can pin-point notorious threading bugs like data

races, thread stalls, deadlocks etc.

• Thread Profiler tools
– Used for performance tuning to maximize code

performance
– Can pinpoint performance bottlenecks in threaded

applications like load imbalance, granularity, load
imbalance and synchronization

04/14/0639

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Example Thread Checker tool: Intel® Thread
 Checker

This is the level in the
call tree where we need
to thread

Identifies time consuming region – finds proper level in Identifies time consuming region – finds proper level in
call-tree to threadcall-tree to thread

04/14/0640

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Example Thread Checker tool: Intel® Thread
 Checker

Analysis

• Where to thread?
– FindPrimes()

• Is it worth threading a selected region?

– Appears to have minimal dependencies
– Appears to be data-parallel
– Consumes over 95% of the run time

04/14/0641

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

04/14/0642

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Example Thread Profiler tool: Intel® Thread
 Profiler for OpenMP

Speedup Graph estimates threading speedup and potential speedup
based on Amdahl’s Law

04/14/0643

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Memory Caching / Performance on multi-core
systems

• To maximize software performance on multi-core
systems, core configurations and memory cache
design has to be considered.

• Process resources are shared by threads, and
synchronized for data access.

• Multi-core processors share caches, and processor
maintains cache coherency

• Cache Memory, and System Memory contains
replicated data, and data state is monitored by Cache
HW. Cache lines are used for data transfer

04/14/0644

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Memory Caching – Considerations for
maximizing Performance

• Use locking primitives to get true sharing of data
between threads, with data synchronization

• Keep few active threads to access data area

• Replicate data copies for use by multi-threads

• Threads feedback data to single thread for updating the
shared data

• Create threads sharing data on cores that share cache.
Use processor affinity to assign tasks to cores.

• False sharing can degrade performance, so organize
data efficiently

04/14/0645

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

OS Support / SW tools

• LINUX* 2.6.16 Kernels have complete support for
multi-core (detects cores and enables them), and
2.6.16 –mm tree has multi-core scheduler
optimizations too

• Intel® C++ Compiler for Linux*, / Windows*
– Supports OpenMP*, Auto-parallelism, designed to support and optimize for

dual-core and multi-core processors

• Intel® Thread Checker
– Pinpoints notorious threading bugs like data races, stalls, and deadlocks

• Intel® Thread Profiler
– Identifies performance issues in threaded applications, and pinpoints

performance bottle-necks affecting execution time

• Intel® VTune Performance Analyzer
– Identifies and characterizes performance issues.

04/14/0646

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

Summary
• Multi-Core processors enable true thread level parallelism with
great Energy Efficient Performance, and Scalability

• To utilize the full potential of multi-core processors, SW
applications will need to move from a single to a multi-threaded
model.

• Optimization techniques like OpenMP*, Auto-parallelization,
cache coherency are key to maximizing performance

• A SW application should not just be threaded, but should be
designed to be a well-threaded application for maximizing
performance on multi-core processors.

Unleash the power of multi-core!Unleash the power of multi-core!

04/14/0647

Copyright © 2006, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective
owners

BACK-UP

