a den

Embedded

Filesystem considerations for
embedded devices

ELC2015
03/25/15

Tristan Lelong

Senior embedded software engineer




Filesystem considerations € )

ABSTRACT

The goal of this presentation is to answer a question asked
by several customers: which filesystem should you use within
your embedded design’s eMMC/SDCard?

These storage devices use a standard block interface,
compatible with traditional filesystems, but constraints are not
those of desktop PC environments.

EXT2/3/4, BTRFS, F2FS are the first of many solutions which
come to mind, but how do they all compare? Typical queries
include performance, longevity, tools availability, support, and
power loss robustness.

This presentation will not dive into implementation details but
will instead summarize provided answers with the help of
various figures and meaningful test results.



TABLE OF CONTENTS

. Introduction

-_—

2. Block devices

3. Available filesystems

4. Performances
5. Tools

6. Reliability

7. Conclusion



Filesystem considerations @ )

ABOUT THE AUTHOR

Tristan Lelong

Embedded software engineer @

French, living in the Pacific northwest

Embedded software, free software, and Linux kernel
enthusiast.



Introduction




Filesystem considerations @ ) Introduction

INTRODUCTION

More and more embedded designs rely on smart memory chips
rather than bare NAND or NOR.

This presentation will start by describing:

e Some context to help understand the differences between
NAND and MMC

e Some typical requirements found in embedded devices
designs

e Potential filesystems to use on MMC devices



Filesystem considerations @ ) Introduction
INTRODUCTION

Focus will then move to block filesystems. How they are
supported, what feature do they advertise.

To help understanding how they compare, we will present some
benchmarks and comparisons regarding:

e Tools
o Reliability
e Performances



Block devices




Filesystem considerations @ ) Block devices

MMC, EMMC, SD CARD

Vocabulary:

e MMC: MultiMediaCard is a memory card unveiled in 1997
by SanDisk and Siemens based on NAND flash memory.

e eMMC: embedded MMC is just a regular MMC in a BGA
package, that is solded to the platform.

e SD Card: SecureDigital Card was introduced in 1999
based on MMC but adding extra features such as security.

This presentation will use term MMC to refer to these 3 in a
generic way.



Filesystem considerations @ ) Block devices

INSIDE MMC

The MMC is composed by 3 elements:

e MMC interface: handle communication with host
e FTL (Flash translation layer):
e Storage area: array of SLC/MLC/TLC NAND chips

10



Filesystem considerations @ ) Block devices

FTL

The FTL is a small controller running a firmware. Its main
purpose is to transform logical sector addressing into NAND
addressing. It also handles:

e Wear-leveling
e Bad block management

e Garbage collection.

FTL firmware is usually a black box, and doesn’t allow any kind
of control or tuning.



Filesystem considerations @ ) Block devices

JEDEC SPECIFICATIONS

MMC specifications are handled by the JEDEC organisation:
http://www.jedec.org

Current JEDEC version is v5.1 (JESD84-B51.pdf published in
Febuary 2015)

12


http://www.jedec.org

Filesystem considerations @ ) Block devices

BLOCK VERSUS MEMORY TECHNOLOGY DEVICES

Block and memory technology devices are fundamentaly
different.

e Block devices: sector addressing. Offers read / write
operations

¢ Memory technology devices: sector / subpage / page
addressing. Offers read / write / erase operations

On NAND or NOR devices, once a bit is flipped to 0, only an
erase operation can flip it back to 7.

13



Filesystem considerations @ ) Block devices

BLOCK VERSUS MEMORY TECHNOLOGY DEVICES

MTD also has some other specificities:

e Shorter lifetime per cells (max number of erase cycle),
requiring to spread operations on the entire array.

e Bad block table
e ECC
e Spare area (OOB)

All this is usually handled by the filesystem itself. This requires
new specific filesystems for MTD.

14



Filesystem considerations @ )

STATISTICS

Block devices

Mobile Handset Booting Architecture

Yo 1 =
100% | = MLC-based eMMC
90%
\

£ sow 'I’ SLC-based eMMC
5 70%
2 P MLC-based
© 60% Raw/Error Free
@ [ NAND
> 50% 1 SLC NAND
T a0% j[/
8 L~ H0neNAND
O 30%
[} 7
a  20% 7 2 NOR

10%
0%

Source: Micron marketing via jedec.org

15



Filesystem considerations @ ) Block devices

PRICE AND CAPACITY

30 |

20 |

Price (USD)

10 |

eMMC SD card NAND
liscBligGBlo16GBII32GBI164GB

Source: chinaflashmarket.com



Filesystem considerations @ ) Block devices

PROS AND CONS

Pros of MMC:

e Standard filesystems are compatible

¢ No extra operation to do (wear leveling, bad blocks, erase,
garbage collection)

e Consistent in bootloader and kernel
Cons of MMC:

e Less control (no tuning possible)

e Need to trust the manufacturer

e Usually more expensive

17



Filesystem considerations @ ) Block devices

DESKTOP VERSUS EMBEDDED SYSTEMS

MMC uses the same filesystems as the one found on desktop
or servers.

Embedded devices have different requirements, therefore
selection critria are not those of usual PC.

e Bandwidth: important for boot time for instance

¢ Reliability: need to be robust to power loss and auto fix
error in case of corruptions

o Efficiency: the more efficient the usage, the less power it
requires

e Cpu usage: embedded processors are often less powerful
than traditional desktop

18



Available filesystems




Filesystem considerations &= ) Available filesystems

FILESYSTEMS IN LINUX
XT3

ENTABTRES
"hre F2FS

20



Filesystem considerations @ ) Available filesystems

WHY NOT ZFS

Provides strong data integrity

Supports huge filesystems

Not intended for embedded systems (requires RAM)

License not compatible with Linux

21



Filesystem considerations @ ) Available filesystems

WHY NOT REISERFS

e Reiser3 version is not supported anymore

e Reiser4 is not mainline Linux

22



Filesystem considerations @ ) Available filesystems

WHY NOT RELIANCE NITRO

Datalight provides a custom filesystem for MMC

¢ Reliance Nitro: Filesystem

e FlashFXe: optimization layer for accesses on MMC.

Some more info can be found on the product page and
datasheet.

e Works on Linux, Windows, VXWorks, and several RTOS
¢ Not free software (evaluation license available)

e VFS layer clear but core is obfuscated

23


http://www.datalight.com/products/embedded-file-systems/reliance-nitro
http://www.datalight.com/my-datalight/download?resource=1313

Filesystem considerations @ ) Available filesystems

HISTORY & SUPPORT EXT4

This file system is used in most of the Linux distribution that can
be found.

e EXT filesystem was created in April 1992

e EXT2 replaced itin 1993

e EXT3 evolution added a journal and was merged in 2001

e EXT4 arrived as a stable version in the Linux kernel in 2008

24



Filesystem considerations @ ) Available filesystems

PRINCIPLE EXT4

EXT4 is a journalized file system. It adds on top of EXT3:

e Large file support, and better performances on large files
e Journal checksum to improve reliability
e Fast fsck

e Better handling of fragmentation

EXT4 is backward compatible with previous versions, and
should provides better performances when used for EXT2 or
EXT3 devices.

25



Filesystem considerations @ ) Available filesystems

HISTORY & SUPPORT BTRFS

BTRFS is a new file system compared to EXT originally created
by Oracle in 2007.

e Mainlined in 2009
e Considered stable in 2014

It is already the default rootfs for openSUSE.
BTREFS inspires from both Reiserfs and ZFS.

26



Filesystem considerations @ ) Available filesystems

PRINCIPLE BTRFS

BTRFS stands for B-tree filesystem.

It brings new features to traditional filesystems:

e Cloning/snapshots

Diffs (send/receive)
Quotat

Union

Self healing (with commit periods defaulting to 30s)

27



Filesystem considerations @ ) Available filesystems

HISTORY & SUPPORT F2FS

F2FS is also a new filesystem created by Samsung and stands
for Flash Friendly filesystem.

F2FS was integrated in the Linux kernel in 2013, and is still
considered unstable, even though being used in several
consumer products already.

28



Filesystem considerations @ ) Available filesystems

PRINCIPLE F2FS

F2FS aims at creating a NAND flash aware filesystem.

It is a log filesystem, and can be tuned using many different
parameters to allow best handling on different supports.

F2FS features:
e Atomic operations
e Defragmentation
e TRIM support

29



Filesystem considerations @ ) Available filesystems

HISTORY & SUPPORT FAT

FAT is a really simple yet lightweight and fast filesystem.

FAT exists for for than 30 years and use to be the file system
used by default on SD Cards.

30



Filesystem considerations @ ) Available filesystems

PRINCIPLE FAT

FAT design is simple and therefore lacks the feature set of
modern filesystems, and doesn’t provide much reliability.

It relies on the File Allocation Table, a static table allocated at
format time. Any corruption of this table might be fatal to the
entire filesystem.

Since flash memory use to be shipped pre-formatted with a FAT
filesystem, several FTL were optimized for it and deliver the best
performances when used with FAT.

31



Filesystem considerations @ ) Available filesystems

HISTORY & SUPPORT XFS

XFS was developed by SGI in 1993.

e Added to Linux kernel in 2001
e On disk format updated in Linux version 3.10

32



Filesystem considerations @ ) Available filesystems

PRINCIPLE XFS

XFS is a journaling filesystem.

e Supports huge filesystems
e Designed for scalability

e Does not seem to be handling power loss well

33



Filesystem considerations @ ) Available filesystems

HISTORY & SUPPORT NILFS2

NILFS stands for New implementation of log filesystem.

e Developed by Nippon Telegraph and Telephone
Corporation

e NILFS2 Merged in Linux kernel version 2.6.30

34



Filesystem considerations @ ) Available filesystems

PRINCIPLE NILFS2

As its name shows, NILFS2 is a log filesystem.

¢ Relies on B-Tree for inode and file management
e CoW for checkpoints and snapshots.

e Userspace garbage collector

35



Filesystem considerations @ ) Available filesystems

JOURNALIZED

A journalized filesystem keep track of every modification in a
journal in a dedicated area.

e The journal allow to restore a corrupted filesystem
¢ Modification is first recorded in the journal
e Modification is applied on the disk

e If a corruption occurs: FS will either keep or drop the
modification

» Journal is consistent: we replay the journal at mount
time

» Journal is not consistent: we drop the modification

36



Filesystem considerations @ ) Available filesystems

JOURNALIZED

Well known journalized filesystems:

o EXT3, EXT4
o XFS

o Reiser4

37



Filesystem considerations @ ) Available filesystems

B-TREE/COW

B+ tree is a data structure that generalized binary trees.

Copy on write is a mechanism that will allow a immediate copy
of a data, and perform the real copy only when one tries to
update.

CoW is used to ensure no corruption occurs at runtime:

¢ Modification done on a file is done on a copy of the block

¢ Old version of the block is preserved until modification is
fully done: transaction commited

e If a interruption occurs while writing the new data, old data
can be used.

38



Filesystem considerations @ ) Available filesystems

COW

Well known CoW filesystems:

e ZFS
e BTRFS
o NILFS2

39



Filesystem considerations @ ) Available filesystems

LOG

A log filesystem will write data and metadata sequentially to
the storage as a log.

e Recovering from corruption is done by using the last
consistent block of data in the log for each entry.

e The tail of the log as to be reclaimed as free space in the
background: garbage collection

Log filesystems take the assumptions that read requests will
result in cache hit, since files are scattered on the storage,
making it slower.

40



Filesystem considerations @ ) Available filesystems

LOG

Well known log filesystems:

e F2FS
e JFFS2
e UBIFS

41



Performances




Filesystem considerations @ ) Performances

CLASSES

The concept of classes describe the minimum speed (write
speed) of an SD Card:

Class name Min speed
Class 2 2 MB/s
Class 4 4 MB/s
Class 6 6 MB/s
Class 10 10 MB/s
UHS1 10 MB/s
UHS3 30 MB/s

43



Filesystem considerations @ ) Performances

HARDWARE USED

The following tests are performed using 3 different SD Cards
and 1 eMMC chip:

¢ Kingston class 10
e Samsung class 10

The testing is done on a beagleboneblack since it offers on
eMMC be default:

e Micron MTFC4GLDEA OM WT (eq class 6)

44



Filesystem considerations @ ) Performances

SOFTWARE TOOLS

The testing are performed using the following software
components:

e Linux kernel 3.12.10
e Linux kernel 3.19

¢ buildroot rootfs

e FIO2.14

o e2fsprogs 1.42.12

e btrfs-tools 3.18.2

o f2fs-tools git (2015-02-18)
e xfsprogs 3.1.11

e nilfs-tools 2.2.1

45



Filesystem considerations @ ) Performances

PARAMETERS USED

One document gives hints to tune some filesystems for NAND
based flash operation. It is available on eLinux:

EMMC-SSD File System Tuning Methodology

Common options are:

e noatime: minimize writes

e discard: enable use of TRIM

46


http://eLinux.org/images/b/b6/EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf

Filesystem considerations @ ) Performances

PARAMETERS USED

EXT4

e Disable journal: faster write (but less reliable)

e nkfs --stripe size options. Should be the number of
blocks inside an erase block.

BTRFS

e SSD mode (automatic)
e mkfs --leafsize option. Should be equal to block size

F2FS

e mkfs -s and -z options. s should be erase size and z 1

47



Filesystem considerations @ ) Performances

PARAMETERS USED

Using the geometry tuning is not portable:

e Requires to run some benchmark to first detect the MMC
geometry

e Check if there is a real gain.

flashbench can help deduce correct geometry by analyzing per-
formance gaps.

48



Filesystem considerations @ ) Performances

TEST DESCRIPTION

Description:

e Load the MMC with the buildroot rootfs (about 15MB)

e Measure time using grabserial between the mounting of
the rootfs and the console prompt

The kernel rootfstype will be set to the fs type in order to avoid
the lookup of the filesystem.

49



Filesystem considerations @ ) Performances

BOOT TIME DEPENDING ON KERNEL VERSION

800

600

400 |

Time (ms)

200

O,

3.12.10 3.19.0
IEXT41IBTRFSIOF2FSEEXFSHIENILFS2

e Great performance gain for last 2 years
e Gap is closing between EXT4 and challengers

50



Filesystem considerations @ ) Performances

BOOT TIME VARIATIONS DEPENDING ON KERNEL VERSION

30

20

Time (ms)

10

0 l_;n_-_
3.12.10 3.19.0
InEXT40IBTRFSIDF2FSEEXFSHENILFS2 ‘

e EXT4 variations makes it less deterministic

51



Filesystem considerations @ ) Performances

BOOT TIME DEPENDING ON SUPPORT

400

Time (ms)

200

Kingston =~ Samsung eMMC
IEXT40IBTRFSIDF2FSEEXFSIENILFS2

e Both SD Cards show the same figures

e eMMC has its own pattern

52



Filesystem considerations @ ) Performances

BOOT TIME VARIATIONS DEPENDING ON SUPPORT

Time (ms)

Kingston Samsung eMMC
lEXT40IBTRFSIDF2FSIEXFSIENILFS2

53



Filesystem considerations @ ) Performances

TEST DESCRIPTION

Description:

e Load the MMC with a large rootfs (1GB) 60% filled

e Measure time using time for the mount command to run

The filesystem type needs to be specified using the -t option in
order to avoid the lookup of the filesystem.

54



Filesystem considerations @ ) Performances

MOUNT TIME

800 |
600 -|

Time (ms)

400
200 |

0 T .

Real User System
liexT4l1BTRFSIoF2FsIaxFSTANILFS2BIFAT \

e F2FS & NILFS2 show bigger delay for mounting even a
clean partition

e XFS shows the biggest delay for mounting even a clean
partition 55



Filesystem considerations @ ) Performances

TEST DESCRIPTION

Several use cases will be tested using fio using only the latest
kernel version 3.19

1. Mono threaded random read
» ex: boot time
2. Mono threaded random write
» ex: data write into database
3. Mono threaded sequential read
» ex: video streaming
4. Mono threaded sequential write
» ex: video capture/recording
5. Multi threaded sequential/random read/write
» ex: a real system with high I/O load

56



Filesystem considerations @ ) Performances

FIO

fio is an I/O generation tool used for benchmarking
¢ Highly configurable
e Offers a lot of parameters
e Description of jobs

e Exports a lot of statistics

57



Filesystem considerations @ ) Performances

READ PERFORMANCES DIRECT

20

—_
)
|

Bandwidth (MB/s)

RandLarge SeqLarge RandSmall  SeqgSmall
liEXT400BTRFSIOF2FSIaXFSIINILFS20BFAT

e Large buffers show better performances

e Sequential or Random access is not a problem when
reading

58



Filesystem considerations @ ) Performances

READ PERFORMANCES BUFFERED

[\)
)
|

—_
]
|

Bandwidth (MB/s)

RandLarge SegLarge RandSmall SeqSmall
IEXT400BTRFSIDF2FSIEXFSIENILFS20BFAT

e Small buffers are fast when using non direct I/O

59



Filesystem considerations @ ) Performances

READ BUS USAGE (BUFFERED / DIRECT)

100
95
90
85
80
RandLarge SeglLarge RandSmall SegSmall

100
95
90
85
80
RandLarge SeglLarge RandSmall SegSmall

InEXT400BTRFSIOF2FSIEXFSHENILFS20RFAT

Percentage xlabel

Percentage xlabel

60



Filesystem considerations @ ) Performances

READ BUS USAGE

¢ Direct mode: small buffered cannot be merged

e Buffered mode: sequential small buffers maximize
throughput

e BTRFS shows that it really benefits from non direct I/O

61



Filesystem considerations @ ) Performances

WRITE PERFORMANCES DIRECT

—_
)
|

(@)
|

Bandwidth (MB/s)

RandLarge SeqlLarge RandSmall SeqgSmall
IEXT400BTRFSIOF2FSIEXFSIANILFS20RFAT

e F2FS and NILFS2 are the fastest in all cases
e Writing small buffers is BTRFS’ weakness

62



U

Performances

Filesystem considerations @

WRITE PERFORMANCES BUFFERED

—_
]
|

ot
|

Bandwidth (MB/s)

RandLarge SeqLarge RandSmall SeqSmall
’IIEXT4|IBTRFSDDF2FSIIXFSIINILFS2IIFAT ‘

e F2FS shows impressive buffered write performances (log
designed)

o Buffering really helps BTRFS again with small buffers



Filesystem considerations @ ) Performances

WRITE PERFORMANCES BUS USAGE

e Bus usage is close to 100% (buffered or direct) when
writing

e F2FS clearly shows the best performances by far on this
Samsung class 10 SD Card

64



Filesystem considerations @ ) Performances

READ PERFORMANCES SUPPORTS

20 |

10

0 |
Samsung Kingston
IEXT400BTRFSIOF2FS

Bandwidth (MB/s) label style

65



Filesystem considerations @ ) Performances

WRITE PERFORMANCES SUPPORTS

10 |

0 |
Samsung Kingston
IEXT400BTRFSIOF2FS

Bandwidth (MB/s) label style
(@3¢
|

66



Filesystem considerations @ ) Performances

WRITE PERFORMANCES SUPPORTS

Test done on direct I/O, large sequential blocks.

e Both SD Cards show approximately the same
performances

¢ No specific tuning in F2FS for Samsung SD Cards

67



Filesystem considerations @ ) Performances

MIXED PERFORMANCES

—_ 37

2

g 2

g

@ 1
O,

DirectRead DirectWrite BufferedReadBufferedWrite
IEXT400BTRFSIOF2FSIaXFSHINILFS20BFAT

68



Filesystem considerations @ ) Performances

MIXED PERFORMANCES

e F2FS scales better on buffered I/O
e EXT4 is for once way below both BTRFS and F2FS
e XFS doesn’t scale that well on MMC

69



Filesystem considerations @ ) Performances

TEST DESCRIPTION

Description:

e Mount the filesystem

e Perform a fixed amount of I/O operations on the
mountpoint: 38GB

e Measure time using /proc/[pid]/stat for every kernel
thread

70



Filesystem considerations @ ) Performances

TEST RESULTS

400
300 |
é 200
100
0
Background
liEXT410IBTRFSIOF2FS

e Even though CPU usage can vary by 1 order of
magnitude, Background tasks are negligible.

7



Filesystem considerations @ ) Performances

TEST DESCRIPTION

Description:

e Mount the filesystem
e Perform a fixed amount of I/O operations on the mountpoint

e Extract time using fio output

72



Filesystem considerations @ ) Performances

EFFICIENCY

10 +

Percentage

WriteLarge  WriteSmall ReadLarge ReadSmall
IEXT40IBTRFSIIF2FSIEXFSHENILFS200FAT

73



Filesystem considerations @ ) Performances

EFFICIENCY

The tests show the average CPU usage for the duration of the
complete test.

e Needs to compare with I/O real duration

o \Write operation takes longer than CPU to copy: Uses less
CPU

e BTRFS not good with small blocks
e F2FS uses more CPU for writing but I/O duration is shorted

74






Filesystem considerations @ ) Tools

MKFS TOOL

This is the most basic task done by mkfs:

e mkfs.ext4 [-d <offline folder>] only with patches
e mkfs.btrfs [--rootdir <offline folder>]

o mkfs.f2fs

76



Filesystem considerations @ ) Tools

MKFS STATS

Statistics on filesystem after formatting:

FS Total Empty MB used
EXT4 976 MB 1.3 MB

BTRFS 1024 MB 0.25 MB

F2FS 1023 MB 141 MB

XFS 981 MB 32 MB

NILFS 936 MB 16 MB

7



Filesystem considerations ( ) Tools

Once mounted all filesystems will create kernel threads.

e EXT4: 2 kthreads

e BTRFS: 23 kthreads
F2FS: 1 kthread
XFS: 5 kthreads
NILFS: 1 kthread

78



Filesystem considerations @ ) Tools

FSCK

Only 4 filesystems offer file system check

o fsck.ext4d

e btrfs check

fsck.f2fs
fsck.xfs

NILFS will always mount the latest consistent checkpoint

79



Filesystem considerations @ ) Tools

FSCK

Statistics on clean filesystem check tool:

FS Real time Sys time + User time
EXT4 60 ms Oms+10ms

BTRFS 130 ms 20 ms +40 ms

F2FS 2090 ms 960 ms + 740 ms
XFS 1320 ms 300 ms + 0ms

NILFS NA NA

80



Filesystem considerations @ ) Tools

EXT4 EXTRA

The different packages that brings utilities for every filesystem
usually contains the basic formatting and check tools.

debugfs Filesystem debugger (advanced)
dumpe2fs Dumps filesystem info

e2image Backup metadatas

e2label Changes the label of a filesystem
e4defrag Online defragmenter

81



Filesystem considerations @ ) Tools

EXT4 EXTRA CONT'D

e e2fsck Filesystem check

e fsck.ext4 link to e2fsck

e mke2fs Creates a filesystem

e mkfs.ext4 link to mke2fs

e resize2fs Offline resize partition

e tune2fs Changes options on a existing filesystem

82



Filesystem considerations @ ) Tools

BTRFS EXTRA

BTRFS offers a lot of extra features. Most of them are available
as subcommands of btrfs master command.

e btrfs Master command for accessing most of the BTRFS
features.

» subvolume Manages subvolumes

» filesystem Manages options

» balance device replace Manages devices
» scrub Erase a filesystem

» check Filesystem check

» rescue Filesystem rescue

83



Filesystem considerations @ ) Tools

BTRFS EXTRA CONT'D

btrfs-convert Converts EXT filesystem to BTRFS

btrfs-debug-tree Dumps filesystem info

e btrfstune Changes options on a existing filesystem
fsck.btrfs Does nothing (compatibility)

mkfs.btrfs Creates a filesystem

Due to its structure, BTRFS cannot reliably show disk space us-
age using traditional tools and one must rely on btrfs command
for this.

84



Filesystem considerations @ ) Tools

F2FS EXTRA

F2FS is still new and doesn’t really offer any extra feature:

e mkfs.f2fs Creates a filesystem
e fsck.f2fs Filesystem check

85



Filesystem considerations @ ) Tools

XFS EXTRA

e xfs_repair

e xfs_fsr: Online reorganize filesystem

e xfs_growfs: Offline resize partition

e xfs_freeze: Suspend/Resume all access to filsystem

e xfs_admin: Changes options on a existing filesystem

86



Filesystem considerations @ ) Tools

NILFS2 EXTRA

e nilfs_cleanerd/nilfs-clean: Garbage collector

e nilfs-tune: Changes options on a existing filesystem
e nilfs-resize: Offline resize partition

e chcp: Convert checkpoints into snapshots

e 1scp: List checkpoints and snapshots

e mkcp: Create checkpoints or snapshots

e rmcp: Remove checkpoints or snapshots

87



Reliability

D




Filesystem considerations @ ) Reliability

TESTING FS RELIABLILITY

Testing the filesystem reliability can be done using several
use cases:

e Power loss while writing files
e Corrupted writes
¢ Blocks going bad

89



Filesystem considerations @ ) Reliability

TESTING FS RELIABLILITY

To simulate these:

e Watchdog to trigger hard reboot on a system to simulate
how likely the fs will fail

e Device mapper dm-flakey module to simulate how the fs
recovers from errors
» Ignore all writes after a certain period of time using
drop_writes
» Corrupt writes after a certain period of time using
corrupt_bio_byte

» Corrupt reads after a certain period of time using
corrupt_bio_byte

90



Filesystem considerations @ ) Reliability

CORRUPTION OF THE FILESYSTEM

Description:

o Test auto starts with the board

e Mounts with sync and async options

Write files and rely on the watchdog to cut power

Check for mount return code, mount errors/warnings, fsck
result

Test ran for 226 iteration for each use case

91



Filesystem considerations @ ) Reliability

CORRUPTION OF THE FILESYSTEM MOUNTED ASYNC

100

50

Percentage

T T
Errors AutoFix Fsck Fatal
IEXT40IBTRFSIOF2FSIaXFSIEINILFS2

e EXT4 async filesystem sometimes require journal
recovery

o All filesystem never got corrupted enough to require fsck

92



Filesystem considerations @ ) Reliability

CORRUPTION OF THE FILESYSTEM MOUNTED SYNC

100

50

Percentage

0 Bl T T
Errors AutoFix Fsck Fatal

InEXT40IBTRFSIOF2FSEEXFSHENILFS2

e F2FS sync filesystem almost always requires fixing
e BTRFS showed errors only 3 errors times

¢ No filesystem ever got corrupted enough to require fsck
93



Filesystem considerations @ ) Reliability

DETECTION/RECOVERY OF CORRUPTED FILES

Description:

e Prepare corruption model by mount all filesystems using
dm-flakey and corrupt the first byte of each block: write 00

» Corrupt all writes after 10 seconds

» Corrupt all writes for 1 seconds then allow writes for 1
second (trickiest)

e Perform the write
» Write a 30MB random file and sync the device

» Write multiple 1MB file and sync the disk

e Unmount and remount the partition normally then inspect
its content

94



Filesystem considerations @ ) Reliability

DETECTION/RECOVERY OF CORRUPTED FILES

.10
@ 5
0 - Hl I h l T
AutoRO  AutoFix Fsck Fatal

IEXT41IBTRFSIOF2FSIEXFSHIENILFS2

95



Filesystem considerations @ ) Reliability

DETECTION/RECOVERY OF CORRUPTED FILES

o EXT4: filesystem does not mount properly
» Sometime turns filesystem RO

» fsck required
» Output file is present but zeroed or emptied

96



Filesystem considerations @ ) Reliability

DETECTION/RECOVERY OF CORRUPTED FILES

e BTREFS: filesystem mounts immediately
» Sometime turns filesystem RO

v

Loses the corrupted file or present files with 1/O error

v

Filesystem keeps running as expected

Can be unfixable if internal structure checksums are
corrupted (backup sb?)

v

v

Best detection of corruption

97



Filesystem considerations @ ) Reliability

DETECTION/RECOVERY OF CORRUPTED FILES

e F2FS: filesystem takes up to several minutes to mount
» Most robust to this kind of corruption

» Sometime turns filesystem RO

» Auto recovery recovers most of the data (file is there
with corrupted bytes)

» File is sometimes corrupted with no warning but
dmesg

98



Conclusion

A




Filesystem considerations @ ) Conclusion

PERFORMANCES

When it come to performances:

e EXT4 use to be the best match for embedded systems
using eMMC for a long time

e New reliable and powerful alternatives are growing quickly
e F2FS and NILFS2 show impressive write performances

e Performances are still device dependent and requires
measurements

Feature wise:

e BTRFS is a next generation filesystem

e NILFS2 provides simpler but similar features

100



Filesystem considerations @ ) Conclusion

SCALABILITY

Scalability:

e Embedded systems can have several core
e Embedded systems can do extensive 10 operations
e EXT4 clearly doesn’t scale as well as BTRFS and F2FS

e XFS scalability works better on spinning disk or high
bandwidth supports

Productization:

e EXT4 is the most mature

e Google uses F2FS in its phones
» Moto X,G,E family

» Userdata partition only
» System still a ro EXT4

101



Filesystem considerations @ ) Conclusion

RECOMMENDATIONS

Reliability = EXT4
BTRFS
F2FS

[ RGS

B NILFS2

W FAT

Features Speed

102



Filesystem considerations @ ) Conclusion

USEFUL LINKS

Filesystem performances on various kernel versions:

e http://www.phoronix.com

Benchmarking

e fio-output-explained.html
e EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf

Filesystem technical documents:

e BTRFS: http://lwn.net/Articles/576276/

e F2FS: http://haifux.org/lectures/293/f2fs.pdf

e F2FS: http://lwn.net/Articles/518988

e NILFS: http://www.nilfs.org/papers/overview-v1.pdf

103


http://www.phoronix.com
https://tobert.github.io/post/2014-04-17-fio-output-explained.html
http://eLinux.org/images/b/b6/EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf
http://lwn.net/Articles/576276/
http://haifux.org/lectures/293/f2fs.pdf
http://lwn.net/Articles/518988
http://www.nilfs.org/papers/overview-v1.pdf

Filesystem considerations @ D Conclusion

QUESTIONS

104



	Introduction
	Block devices
	Hardware considerations
	Block versus memory technology devices
	Constrains of embedded storages

	Available filesystems
	List of candidates
	EXT4
	BTRFS
	F2FS
	FAT
	XFS
	Type of filesystems

	Performances
	Context and tools
	Boot time
	Mount time
	Bandwidth
	BUS usage
	Background tasks
	CPU usage

	Tools
	Formatting
	House keeping
	Recovering
	Extra

	Reliability
	Context and tools
	Detection/recovery of corrupted files

	Conclusion

