
Slide 1 - http://www.pengutronix.de – 2016-10-11

Long-Term
Maintenance

&
 Rollout Concepts

for
Linux based
IoT Devices

Embedded Linux Conference Europe
Jan Lübbe <j.luebbe@pengutronix.de>

Slide 2 - http://www.pengutronix.de – 2016-10-11

A Short Survey

● Who has developed Linux systems?

● … that are now in the field? More than 5 years? 10 years?

● … which use versions still maintained by upstream?

● Who had to update to fix a vulnerability?

● How long did it take? A day, a week, a month, a year?

Slide 3 - http://www.pengutronix.de – 2016-10-11

“Classical” Embedded Systems Lifecycle

Development Phase

Component
Version Decisions SoP

Development
HW / SW

Testing,
Documentation

Slide 4 - http://www.pengutronix.de – 2016-10-11

“Classical” Embedded Systems Lifecycle

Development Phase

Maintenance Phase

No Changes

Slide 5 - http://www.pengutronix.de – 2016-10-11

glibc

Kernel

OpenSSL

S
ou

rc
e

:
h t

tp
:/

/w
w

w
.c

v e
de

ta
i ls

.c
om

/

Slide 6 - http://www.pengutronix.de – 2016-10-11

Backdoor in Allwinner Vendor Kernel

Slide 7 - http://www.pengutronix.de – 2016-10-11

Field Observations

● Hardware vendors don't care about maintenance
Vendor kernels already obsolete at start of project

● No strategy in pre-built distributions
Development company on their own

● Getting feedback by seeing your device in the news ...
Already too late ...

● Selecting components tagged “longterm” w/o update concept
Getting worst of both worlds

● Avoiding regular updates
No proven and trained process

Slide 8 - http://www.pengutronix.de – 2016-10-11

Continuous Maintenance is Important!

● Critical vulnerability in a relevant component:
At least one per 1-2 years (for a given system!)

● Upstream Projects maintain components for 2...5 years

● Server Distros are made for (at least casual) admin interaction

Maintenance Phase

Lifetime
Maintenance

Slide 9 - http://www.pengutronix.de – 2016-10-11

Backporting?

Idea: Start with a version, backport patches if necessary

● Doesn't scale with number of products versions diverge→

● Many local modifications low test coverage→

● After a few years: almost impossible to decide
which upstream fixes are relevant

For product lifetimes of 10 ... 15 ... years,
backporting is unsustainable!

Slide 10 - http://www.pengutronix.de – 2016-10-11

What do we want?

● Short time between incident and fix

● Low risk of negative side effects

● Predictable (and low) costs over the maintenance period

● Scalable to multiple products

Slide 11 - http://www.pengutronix.de – 2016-10-11

Ingredients for a Sustainable Process

Always use releases still maintained by upstream

Remove unused components and features

Review security announcements regularly

Use well-proven processes for:
● Building all components
● Testing and releasing new versions
● Deploying updates

Each release defines all software components exactly

Ensure that all components can be upgraded in the field

Slide 12 - http://www.pengutronix.de – 2016-10-11

Workflow - Development

● Submit changes to the upstream projects
 reduce maintenance effort→

● Automate processes (build, test, release, deployment)
 “executable documentation”→
 reproducibility→
 avoid mistakes→

● Stabilize for release on then-current stable upstream releases
 no outdated versions in use→

Development Maintenance

Slide 13 - http://www.pengutronix.de – 2016-10-11

Workflow – Every Year

Be prepared for possible incidents:

● Update components to current stable upstream releases
(Kernel, Build-System, …)

 no unsupported versions in use→

● Submit remaining changes to upstream projects
 further reduce maintenance effort→

● Testing
 find and fix possible regressions→

Development Maintenance

Slide 14 - http://www.pengutronix.de – 2016-10-11

Workflow – Every Month

Periodic maintenance:

● Integrate upstream maintenance releases
 be prepared→

● Review security announcements for components

● Evaluate impact on the product

Development Maintenance

Slide 15 - http://www.pengutronix.de – 2016-10-11

Workflow – Incident Response

Handle the identified problem:

● Apply upstream fix

● Use automated build, test, release and deployment processes
 fix deployed→

Development Maintenance

Slide 16 - http://www.pengutronix.de – 2016-10-11

Tools

Process Automation Jenkins 2 with Pipeline as Code

Test Automation LAVA
kernelci.org

Redundant Boot Barebox (bootchooser)
UBoot/GRUB with custom scripts
UEFI (am64, arm64)

Update Installer and Recovery RAUC
OSTree (larger systems)
Swupdate

Rollout Scheduler hawkBit
static webserver
custom application

Slide 17 - http://www.pengutronix.de – 2016-10-11

Conclusion

Many approaches have failed:
Ignoring the problem
Ad-hoc fixes for outdated versions
Customized server distributions

Reasonable amount of work if done right:
Upstreaming
Process automation
Sustainable work-flow

No more excuses for badly
maintained embedded products!

Slide 18 - http://www.pengutronix.de – 2016-10-11

Q & A

