
The end of embedded Linux
(as we know it)

Chris Simmonds

2net Ltd.

6th November 2012

Chris Simmonds

• Has been using Linux as an embedded operating system
since 1999

• Has been training others how to do the same since 2002
• Blog at http://embedded-linux.co.uk/
• Company web site: http://2net.co.uk/

http://embedded-linux.co.uk/
http://2net.co.uk/

Overview

• How embedded hardware has changed over the last 10
years

• The traditional approach to embedded Linux
• What do we really want from embedded Linux?
• Some options for the future

• Mainstream distribution
• Embedded distribution
• Android

• Are they up to the job?

Evolution of embedded hardware

10 years ago: Embedded Planet RPX Lite
• MPC823 @ 80 MHz
• 16 MiB RAM, 8 MiB NOR flash
• $500

Today: Pandaboard ES
• TI OMAP 4460 ARM Cortex A-9 dual core @ 1.2 GHz
• 1 GiB RAM, 4+ GiB on SD Card
• $160

Changes

Hardware capabilities have increased many fold:
• Clock speed: 15 times
• RAM size: 64 times
• Storage: 512 times
• Cost: 0.32 times

What happened to cost?
The Beagleboard effect

A small board appearing in one place can cause huge
disruption in other places

Embedded Linux - past

Embedded Linux evolved to cope with
• Non-PC architectures
• Board support packages for custom hardware
• Low RAM
• Small amount of storage
• Low clock speed
• Flash memory
• Robustness - must not fail
• Either headless, or
• User input from keypad or touch screen

• No embedded device has keyboard or mouse

Embedded Linux - past

Engineers responded with
• Cross compilers (Crosstool(ng), etc)
• Busybox
• uClibc
• MTD, cramfs/squashfs, jffs(2), yaffs(2), ubifs
• Simplified startup scripts
• Stripped-down root file systems
• Read-only root file system (reduces wear on flash
memory)

• Many, many custom BSPs and device drivers

Embedded Linux - past

The typical approach to a project used to be
• Find a toolchain
• Create a custom U-Boot
• Find a kernel for your SoC/board & build it
• Build a minimal root fs
• Cross compile libraries and applications as needed
• Tinker with it until it worked

• Buildroot or OpenEmbedded helped a lot

Every project was different, always starting from scratch

Embedded Linux now and future?

• Clock speed (processor power), RAM and storage no
longer an issue

• Reduced need for Busybox, uClibc
• Reduced need for custom rootfs, custom start-up scripts

• Storage moving from raw flash to eMMC and SD
• Reduced need for mtd and flash filesystems jffs2
• Increased need for SSD friendly software

Chance to re-think what constitutes "embedded Linux"

New problems

• Complexity
• people want more from devices

• User interface
• if it has a touchscreen it has to work like a smartphone

• Maintainability
• all that software has bug fixes that need pushing to the
field

• Skill level
• doing things the old way requires a high level of skill
• there are too many devices and not enough engineers
• ergo, embedding Linux has to get easier

My ideal embedded Linux OS (1)

• Completely open source
• Architecture support: at least ARM, MIPS, PPC, x86
• Availability of board support packages for standard
hardware

• Ability to create new BSPs for new and custom hardware
• Flexible
• Minimal base install (not all devices have 4 GiB to spare)
• Reduced system writes to preserve flash memory

• No swap
• Volatile /tmp, /run and parts of /var
• Read-only root fs

My ideal embedded Linux OS (2)

• Proper system logging - that also reduces flash wear
• In-field remote update
• Fall-back boot if main boot fails (recovery mode)
• Debug and trace tools that can be used remotely
• Touchscreen support, including OSK (on screen
keyboard) and fat fingered navigation

• Long term support

What are the options?

• Use a mainstream distro (e.g. Debian, Ubuntu, Fedora)?
• Use an embedded distro (e.g. Open Embedded, Yocto)?
• What about Android?

In the next few slides I will look at the pros and cons and give
marks out of 10 for MS (Mainstream Distro), ED (Embedded
Distro) and AN (Android)

Completely open source

• None require closed source components to build or run
• Although, silicon vendors cause problems with closed
source drivers (especially GPU)

MS 10 ED 10 AD 10

Architecture support

Points awarded for architecture dependant repositories and
cross tool chains

• Mainstream distros
• Most support ARM v7
• Some (e.g Debian) also support older ARM, PPC and
MIPS

• Embedded distros
• All the main archs

• Android
• ARM v5te and v7, x86, MIPS

MS 7 ED 10 AD 8

Board support packages

• Mainstream distros
• Most have binary images for standard hardware (e.g
Beagleboard)

• Only Linaro has a tool for creating a BSP:
• linaro-media-create joins a generic binary with hardware

pack
• But of course, Linaro is not a distro

• Embedded distros
• Yes, of course

• Android
• "lunch combo" does the job

MS 2 ED 10 AD 10

Flexibility

• Mainstream distros
• Very flexible: many 1000’s of packages to choose from

• Embedded distros
• Quite flexible

• Android
• 100,000’s of apps, but that it not relevant here
• Base OS very inflexible

MS 10 ED 7 AD 0

Minimal base install

• Mainstream distros
• Most have a minimal configuration of a few 100’s MiB
• Examples: Emdebian Grip, Ubuntu Core

• Embedded distros
• Minimal rootfs about 16 MiB

• Android
• A default build of AOSP: 160 MiB
• Note this is the whole stack but since Android is
monolithic you can’t have anything less

MS 7 ED 10 AD 8

Reduced writes/flash friendly
Points awarded for

• No swap
• Volatile /tmp, /run and parts of /var
• Read-only root fs

• Mainstream distros
• Disable sway - easy
• Volatile /tmp - quite easy
• Read-only root - hard or very hard

• Embedded distros
• All have no swap and volatile /tmp
• Little support for read-only root

• Android
• Yes, has all of these features

MS 2 ED 7 AN 10

Proper system logging

Minimal requirement - avoid many small writes to /var/log
• Mainstream distros

• Have Busybox syslogd as an optional package
• Embedded distros

• Use Busybox syslogd -C by default
• Android

• has logcat: multiple ring buffers for various sub systems

MS 3 ED 5 AD 5

Logging in Linux is a mess

Remote update and fall-back boot
The problem

• In-field update of kernel and packages is a must
• Problems occur at the boundary between BSP and distro

• BSP includes kernel, modules and user space config files
• Introduces dependencies that are difficult to resolve
separately

• Mainstream distros
• In my experience, they don’t handle updates well

• Embedded distros
• More flexible definition of arch-dependant feeds

• Android
• With a custom build, it’s up to you to build and
distribute updates

• Does have a well-defined recovery mode though

MS 0 ED 5 AD 5

User interaction
Points here for touch screen navigation:

• OSK - on screen keyboard that pops up when needed
(and goes away after)

• simplified navigation for fat fingers
• full-screen apps
• ideally, multitouch gestures

• Mainstream distros
• Unity, Gnome-shell, KDE Plasma Active are all headed in
that direction

• Embedded distros
• Not that I am aware of...

• Android
• Yes, its mostly what Android is about

MS 5 ED 0 AD 10

Debug and trace tools

• Mainstream and embedded distros
• All the standard packages
• gbdserver, perf, oprofile, LTTng

• Android
• gdbserver
• Eclipse ADT plugin
• adb is very handy
• But lacks trace tools such as perf and LTTng

MS 9 ED 9 AD 9

Long term support

• Mainstream distros
• Up to 5 years support for bug fixes and updates

• Embedded distros
• No clear statement of update policy
• Bug fixes rather slow to come through

• Android
• No clear statement of update policy
• Bug fixes rather slow to come through

MS 10 ED 5 AD 5

Final scores

• Points out of 110

MS 64 ED 78 AD 80

Note: this is totally unscientific, I admit that

Android is the winner?

• Kudos to the Android developers for creating a really
good embedded OS

• But...
• It is monolithic - hard to take apart and re-purpose
• It is inflexible - hard to add bits on (e.g. normal FLOSS
packages)

• It is not a community project - doesn’t have a life beyond
Google

• Android is only good for devices that look like a
smartphone or tablet

What then?

• Each can learn from the others, especially
• Mainstream distros

• Better tools to create custom BSPs
• Support flash memory properly!

• Embedded distros
• Reduce complexity
• Support in-field updates better

• All - create a logging solution that actually works

Conclusion

• This is not the end of embedded Linux, but ...
• ... it is the end of embedded Linux as a cottage industry
• Future devices will take more from mainstream distros
(and be better for it)

• But, there is work to be done
• Hopefully the community (and industry) will fill in the
gaps

• Or, there is Android for some classes of device

