
EFL
Enlightenment Foundation Libraries

http://www.enlightenment.org

Architecture & Usage

Sanjeev BA

EFL Enthusiast, Senior Engineer

AS2902.B@SAMSUNG.COM

http://www.enlightenment.org/
mailto:raster@rasterman.com

What is EFL?

• A collection of libraries
• Built by the same team working on Enlightenment
• Built for the purpose of making E17 (Enlightenment

0.17)
• Always focused on staying lean and still providing

fanciness
• Almost all development focus sunk into EFL vs E17
• Cover a wide range of functionality due to broad needs
• 26% of code for E17 is E, rest is EFL.
• E17+EFL make up only 50% of code in SVN though

EFL's Origins

EFLImlib2Imlib/Fnlib

Enlightenment
(0.1 – 0.16.x)

Enlightenm
ent

(0.17)

199
6

200
1

201
2

Historical Details

● 1996 – Enlightenment development started

● 1997 – Imaging layer split off into Imlib and Fnlib

● 1997 – Imlib adds GTK+/GDK support

● 1999 – Imlib2 combines images, fonts, alpha channels
etc.

● 2001 – Evas (using Imlib2 and OpenGL) first appears

● And then EFL really began as more libs were added:

● Ecore, Ebits (later replaced by Edje), Edb (deprecated
in favor of Eet), Eina, Embryo, Efreet, EDbus, Ethumb,
Emotion, Elementary, Epdf, Eeze.

What's inside

• Canvas scene-graph (Evas)
• OpenGL, OpenGL-ES2.0, Software renderer and more
• Core mainloop, connection, input and glue libraries

(Ecore)
• Data codec and storage (Eet)
• Bytecode VM (Embryo)
• Pre-made data objects with scripting, animation etc.

(Edje)
• Freedesktop.org standards support (Efreet)

What's inside

● Data structure, modules and base (Eina)

● Dbus integration and wrapping (Edbus)

● Asynchronous I/O (Eio)

● Video playback glue (Emotion)

● Udev hardware detection (Eeze)

● Thumbnailer & cacher (Ethumb)

● Widgets & convenience (Elementary)

So why does this matter?

● EFL is the core toolkit being used in Tizen

● EFL is built for performance and low footprint
● Still heavy focus on customization and power

● Native apps can use EFL as opposed to shipping their own
toolkits

● Smaller footprint for shipping devices

● Continued support

● It's an open source project

● API's all in C, thus easily usable from both C and C++
● Support for language bindings coming soon.

Where does it lurk?

EFL

KERNEL

libpng/jpeg etc.libc etc. X11, OpenGL, etc. D-Bus, Services

Enlightenment
(Window Manager & Compositor)

HTML5 Apps

Browser
And HTML5

Runtime

Native Applications
and Services

EFL

Building Blocks

Elementary

Application, Library, Service

Edje

Ecore

Evas

Eet

Eina

Efreet EDbus

Embryo

EmotionEthumbEezeEio

Core OS (Kernel, libc, other system libraries, OpenGL, D-Bus, X11,
services etc.)

(Currently not in
Tizen)

Why EFL?

• Why is EFL being used as opposed to GTK+ or Qt or something
else?

• Speed
• Samsung used GTK+, X11 and DirectFB (in combinations) and

once EFL was tried, it soundly beat these hands-down in
performance

• Very fast software rendering (for all occasions)
• Solid Accelerated OpenGL and OpenGL-ES2.0 support for

many years
• 60fps+ on common smartphones equaling android with

higher quality

Why EFL?

• Why is EFL being used as opposed to
• GTK+ or Qt or something else?

• Benchmarking based on failsafe X11 session (2011)
• Unity – 168Mb
• Enlightenment 0.17 – 65Mb

• Roughly similar features and setup
• Compositor (OpenGL),
• fullscreen wallpaper,
• launcher, icons, filemanager, etc.

How is this relevant?

• Mobile devices ship with limited memory
• These devices almost never use swap
• Flash has limited writes, so swap can hurt device lifespan
• Lower end devices may not have GPU's
• Require decent software rendering to make up for it

Samsung Z1
768 MB RAM
480 x 800 pixels (~233 ppi pixel density)

ECORE

Core concepts

• Event driven mainloop
• Rendering (UI)
• Application state management
• Small miscellaneous tasks (non-blocking)
• Support for threaded work
• Added thread models with mainloop begin/end blocks

and mainloop call dispatch (from threads).
• More on threading

• http://docs.enlightenment.org/auto/elementary/thre
ading.html

The Mainloop (Ecore)

Z
Z
Z

WAKE UP

PROCESS TIMEOUTS

PROCESS EVENTS

PROCESS JOBS

GO TO SLEEP

SPIN IN
IDLERS

O
R

EVENT
HANDLER

TIMER/ANIMATOR

IDLE EXITER

JOB

IDLE ENTERER

CALLBACK

EVAS RENDERS
UPDATES

To keep a smooth UI

• Put I/O work or heavy computation into threads
• Use the constructs provided to make this easy
• Keep state in Mainloop consistent
• Only deliver changes as a whole (UI tracks state)

• automatic within mainloop
• Use Animators, not Timers for animation
• Remember that mainloop is for keeping application state
• Blocking it blocks state (and UI) updates

Threading the Mainloop (Ecore Thread)

Mainloop

Thread
Job

Thread
Job

Thread
Job

Thread
Job

Thread
Worker

Thread
Worker

Thread
Worker

Queu
e

Mainloop adds thread job

Results returned to Mainloop
(result functions run inside Mainloop)

Hello EFL
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {

elm_exit();

}

static void on_ok(void *data, Evas_Object *obj, void *event_info) {

elm_exit();

}

int elm_main(int argc, char **argv) {

Evas_Object *win, *box, *label, *button;

win = elm_win_util_standard_add("main", "Hello");

evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

box = elm_box_add(win);

label = elm_label_add(win);

elm_object_text_set(label, "Hello out there world");

elm_box_pack_end(box, label);

evas_object_show(label);

button = elm_button_add(win);

elm_object_text_set(button, "OK");

elm_box_pack_end(box, button);

evas_object_show(button);

evas_object_smart_callback_add(button, "clicked", on_ok, NULL);

elm_win_resize_object_add(win, box);

evas_object_show(box);

evas_object_show(win);

elm_run();

}

ELM_MAIN();

Hello EFL
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {

elm_exit();

}

static void on_ok(void *data, Evas_Object *obj, void *event_info) {

elm_exit();

}

int elm_main(int argc, char **argv) {

Evas_Object *win, *box, *label, *button;

win = elm_win_util_standard_add("main", "Hello");

evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

box = elm_box_add(win);

label = elm_label_add(win);

elm_object_text_set(label, "Hello out there world");

elm_box_pack_end(box, label);

evas_object_show(label);

button = elm_button_add(win);

elm_object_text_set(button, "OK");

elm_box_pack_end(box, button);

evas_object_show(button);

evas_object_smart_callback_add(button, "clicked", on_ok, NULL);

elm_win_resize_object_add(win, box);

evas_object_show(box);

evas_object_show(win);

elm_run();

}

ELM_MAIN();

Hello EFL
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {

elm_exit();

}

static void on_ok(void *data, Evas_Object *obj, void *event_info) {

elm_exit();

}

int elm_main(int argc, char **argv) {

Evas_Object *win, *box, *label, *button;

win = elm_win_util_standard_add("main", "Hello");

evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

box = elm_box_add(win);

label = elm_label_add(win);

elm_object_text_set(label, "Hello out there world");

elm_box_pack_end(box, label);

evas_object_show(label);

button = elm_button_add(win);

elm_object_text_set(button, "OK");

elm_box_pack_end(box, button);

evas_object_show(button);

evas_object_smart_callback_add(button, "clicked", on_ok, NULL);

elm_win_resize_object_add(win, box);

evas_object_show(box);

evas_object_show(win);

elm_run();

}

ELM_MAIN();

Hello EFL
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {

elm_exit();

}

static void on_ok(void *data, Evas_Object *obj, void *event_info) {

elm_exit();

}

int elm_main(int argc, char **argv) {

Evas_Object *win, *box, *label, *button;

win = elm_win_util_standard_add("main", "Hello");

evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

box = elm_box_add(win);

label = elm_label_add(win);

elm_object_text_set(label, "Hello out there world");

elm_box_pack_end(box, label);

evas_object_show(label);

button = elm_button_add(win);

elm_object_text_set(button, "OK");

elm_box_pack_end(box, button);

evas_object_show(button);

evas_object_smart_callback_add(button, "clicked", on_ok, NULL);

elm_win_resize_object_add(win, box);

evas_object_show(box);

evas_object_show(win);

elm_run();

}

ELM_MAIN();

Hello EFL
(in C)

• $ gcc hello.c -o hello `pkg-config --cflags --libs elementary`

• $./hello

EVAS

What is a scene graph? (Evas)

• Tracks state of all display objects
• Position, size, visibility, color, properties etc.

• Handles rendering of each object
• Loading fonts, images, rendering glyphs, scaling, fading
etc.

• Handles minimizing of rendering
• Only update areas changed

• If changes obscured, reduce to a NOP
• Optimize rendering

• Abstract to OpenGL, software, or anything else

What is a scene graph? (Evas)

• Allows you to build your own composite objects
• Creates parent/child relationship

• Is used throughout EFL to build widgets etc.

• Handles input direction and event callbacks

• Text formatting & layout

Putting together objects

Canvas core

Abstracting rendering

Hello out
there

General Rendering

Software rendering
API

Software core

OpenGL Rendering
API

OpenGL core
OUTPUT

(screen/window)

Input device
events

Canvas state
changes

Select rendering engine at
runtime

Rendering
command

Image data, fonts
etc.

Automated update handling

Hello out
there

Start here

Automated update handling

Hello out
there

Next frame is here

Automated update handling

Hello out
there

Calculate actual update region deltas (up to each engine to implement)

Automated update handling

Hello out
there

Only draw updated regions (up to each engine to
implement)

Automated update handling

Hello out
there

Result

Multiple output paths

● X11 (OpenGL, Xlib & XCB)

● Wayland (OpenGL & SHM)

● Raw Framebuffer

● Memory buffers

● PS3 Native

● SDL (OpenGL)

● Windows (32/64/CE) (GDI & DirectDraw)

● … others too

EDJE

Pre-made objects for designers (Edje)

• Edje allows a designer to store objects in files

• Pre-made layout with rules and reactions to events

• Stored separately to code in binary files for runtime
replacement

• Fast & compact random access designed for realtime
use

• All layout, image data, etc. etc. all in 1 file (zero-
unpacking)

• Intended for designers & developers to work
independently

• Supports scalable and resizeable layouts

• Provides the core ability to re-theme and entire UI or
OS

How it works

EdjeEvas

Application

Mainloop

Edje File

Create & control Objects

Get event callbacks

Signal callbacks

Messages

Queries

Signal emits

Messages

Swallows

Controls

Text etc.

Layout rules, parameters & states

Images & fonts

Event reaction rules

An example
collections {

group { name: "hello";

images {

image: "plant.jpg" LOSSY 80;

image: "shadow.png" COMP;

}

parts {

part { name: "bg";

description { state: "default" 0.0;

aspect: 1.0 1.0; aspect_preference: NONE;

image.normal: "plant.jpg";

}

}

part { name: "label"; type: TEXT; scale: true;

description { state: "default" 0.0;

text {

font: "Sans"; size: 20;

text: "Hello World!";

}

}

}

part { name: "shadow";

description { state: "default" 0.0;

image.normal: "shadow.png";

}

}

}

}

ELEMENTARY

So what is Elementary?

● A widget set built on top of the lower-level EFL layers

● Brings coherent policy and consistency to widgets

● Pre-made common widgets most applications need

● Central theme setup so applications look consistent

● Utilities saving extra footwork by the developer

● Touch friendly design

● Scaling of UI from the get-go

● Also adjusts for input resolution (finger vs mouse etc.)

So what is Elementary?

● It can be seamlessly merged with lower level objects

● Programmer can use Elementary containers or hand-arrange widgets
and control them

● Since all objects can be stacked and layered, so can elementary widgets

● Widgets can be transformed like any object

● Handles dealing with IME (Virtual keyboard) for you

● Does many other useful things to save you time

Results with Elementary

Results with Elementary

•EMOTION

Video & Sound in your world

● Gives you a high level API to include video

● Abstracts to different video decode back-ends

● Optimizes decode via YUV paths or video overlay

● Simple to use

Simple Video

• Evas_Object *vid = emotion_object_add(canvas);

• emotion_object_init(vid, NULL);

• emotion_object_file_set(vid, "file.avi");

• evas_object_resize(vid, 640, 360);

• emotion_object_play_set(vid, EINA_TRUE);

• evas_object_show(vid);

How it works

Decod
er

thread

Thread

Thread Thread

Mainloop

Evas Emotio
n

Core

Media file or
stream

Media Codec
(Gstreamer/Xine/Generic)

Applicati
on

Emoti
on

EET

Garbage in, garbage out

Eet
(Library)

Applicati
on

(RAM)

Binary
Data

(File or
buffer)

Eet
(Cmdline

)

Text file
Stdout

01000111010101
10101

group “Data” struct {
value “name” string:

“Bob”;
...

struct Data {
const char

*name;
...

XML/JSON … for C programmers

• Parsing text is painful
• Parsing correctly without bugs, overflows is harder
• Most programmers hate parsing
• XML, JSON etc. optimized for editing, not runtime
• Programs read/write data 1000x more than humans
• So optimize for the common use case, not the uncommon one
• Make it as easy 1-liners for C code to load or save data
• Edje, Enlightenment config, Elementary config built on EET

Flexible, portable and robust

● Allows you to store data in a file (key/value pair)

●Random access read optimized

●Data can be any binary, image, string or struct
encoded

●Compresses separate keys (like zip)

● Allows you to en/decode structs to buffers (for network)

● Provides a protocol buffer handler for decodes

● Files and data all platform agnostic (portable)

● Structs encoded with nested key & types for robustness

•EDBUS EFREET EINA
ETHUMB EEZE
EMBRYO EIO ...

And the saga continues

● More EFL libraries with no time to mention them

● Expanding libs and scope on a daily basis

QnA

• Enlightenment Foundation Libraries

• http://www.enlightenment.org

• Join our

• IRC : #edevelop, #e

• Mailing Lists

• https://lists.sourceforge.net/lists/listinfo/enlightenment-devel

http://www.enlightenment.org/
https://lists.sourceforge.net/lists/listinfo/enlightenment-devel

