
Mark Brown, ELC 2015, San Jose

regulators: Learning to play with others

• Regulator API overview
• Modern systems
• Non-regulator solutions
• Microcontroller interfacing
• Suspend/idle integration
• Future work

Introduction

• For Linux we mean voltage regulators
• Takes an input supply, produces a target voltage
• Many different kinds

• LDO
• DCDC
• Boost

• All very similar to software
• Enable/disable
• Set voltage
• Set performance requirements
• Typically I2C or SPI devices grouping several regulators

• Current regulators do exist, not relevant here

What is a regulator?

How does it fit into a system?

PMIC CPU

Audio WiFi BT HDMI

• Power saving
• Hardware interfacing

• MMC
• Fix hardware defaults

Why do regulators need drivers?

• Drivers register as devices as normal
• Provide set/get operations

• Enable
• Voltage
• Set performance characteristics

• Provide parameters
• Voltage ranges
• Time to implement changes

• Standard regmap operations provided
• Many regulators need only data

regulator API - regulator devices

• Request supply using device side supply name
• Special interface if supply might be missing

• Read status
• Request configuration

• Range based interface for voltages

• Notifications provided when configuration changes
• Details of regulator hidden

regulator API - consumer devices

• Firmware or board file maps regulators to devices
• Explicitly says what operations are allowed

• Range of voltages to set
• Supported operating modes
• If supply can be turned off

• Default behaviour is read only
• Any problems due to system integration!

• Core applies settings from consumers within constraints
• Combines requests from consumers
• Settings may not take effect due to other devices or constraints

• Kernel knows exact hardware state at all times

regulator API - system integration

• Typically handled with hard coded configuration

• Sometimes Linux needs to tweak setup for suspend
• DT bindings

Suspend mode configuration

Modern system design

Modern system design

Modern system design

Modern system design

• Suspending main AP no longer fixed process
• Multi-cluster systems
• Runtime configurable functionality
• Blurring of distinction between suspend and idle

• Other processors running while main AP is suspended
• Baseband
• WiFi
• Always on sensor monitoring

• Fine grained power optimization
• Tuning for individual chip characteristics
• Often need real time response

• Security considerations

Motivation

• Completely hide power control details
• OS provides device on/off information
• System integration done in firmware

• Great for servers/laptops
• Limiting for mobile

• Fine grained power control
• Too much hardware variation
• Schedules too tight

Ultra simplified model - ACPI

• Key subsystems hidden from OS
• Normally CPUs
• Any OS control via higher level interfaces

• May use some regulators on a shared chip
• regulator_get_hardware_vsel_register()
• regulator_list_hardware_vsel()

Mixed model - hidden subsystem

• Microcontroller arbitrates between users
• Core SoC supplies
• Supplies shared with external components

• Ideally microcontroller offers regulator API interface
• Zero effort?

Mixed model - visible subsystem

• Linux idea of system state can diverge from hardware

• Qualcomm RPM - two modes for Linux system active
• Active - Linux running

• CPU supplies
• Idle - Linux in idle

• WiFi

System mode mapping

• Generic devices get mapped in DT
• Default is all modes that apply outside of suspend

• Provide interface for drivers that know about modes
• regulator_set_voltage(regulator, mode, min, max);
• regulator_set_voltage_mode(regulator, mode, min,

max);

Mode specific configuration

• Some microcontrollers provide abstract modes
• Essentially OPPs

• Can be hidden subsystem model
• Simple to handle for platform specific devices

• regulator_set_mode() or equivalent
• Need mapping mechanism for more generic devices

• Yes, people do this

Abstracted settings

• Confirm designs with real systems
• Upstream it

• Improve support for specifying voltages by tolerance
• Support for resolving dependency loops between

PMICs

Next steps

• Qualcomm
• Bjorn Andersson
• Stephen Boyd
• Doug Anderson
• Javier Martinez Canillas
• Kevin Hilman

Thanks

More about Linaro Connect: http://connect.linaro.org
More about Linaro: http://www.linaro.org/about/

More about Linaro engineering: http://www.linaro.org/engineering/
Linaro members: www.linaro.org/members

http://www.linaro.org/about/
http://www.linaro.org/about/
http://www.linaro.org/engineering/
http://www.linaro.org/members

