
Hi, I am Cédric, I work for Genymobile as a System Engineer
Genymobile is a company specialized in Android. We are based in
France (Paris and Lyon) and SF.
We develop and customize android ROM for our customers.
We also have our own products like Genymotion (android emulator,
you may have heard of it)

Today I’d like to talk about how to customize a Android system

Android
Customization:
From the Kernel to the
Apps

Let’s see what problem we want to solve

INTRODUCTION

Android is a full operating system. It come with a SDK to build
apps. Every hardware modules can be accessed with a coherent
Java API (eg: camera, gps, sensors)
Everything is protected by a Permission mecanism

Very convenient for application developper.

As a linux developper, I’d like to port my own hardware to Android.
Eg: board with a serial port, gpio, ...

Introduction

Android is a “full stack” OS

How to use my own hardware?

Let’s see how to customize android.
We start from the kernel and go all the way up to the app!

In this presentation we will follow what is done in AOSP.
This mean changing google code.
This is the easiest way, however this can bring problems when we
want to port to another android version.

Some other approach need less change in AOSP. To understand
how the layers are put together we will keep this method

Introduction

Summary

Kernel

01

Hal

02

Jni

03

System Service

04 05

Framework

06

App

KERNEL01

Kernel

Not part of AOSP

Driver: Built-in or Module

GPLv2

Every file that is used to build and customize you device go to
“device”
This module will create a “character device”
We do not want to give access to the device to every application,
we restrict to the system user.
We also do not want our app to run as system.

Kernel

device/<vendor>/<product>/init.<product>.rc

on boot

insmod /system/lib/modules/abs.ko

chown system system /dev/abs

chmod 0600 /dev/abs

device/<vendor>/<product>/device.mk

PRODUCT_COPY_FILES := \
 device/<vendor>/<product>/abs.ko:system/lib/modules/abs.ko

No demo with real hardware

Kernel

Our “device” is a simple module that convert upper case to lower
case

We want to protect access to the device, only “system” is allowed
to r/w. Of course our application will not have system permission.

We need the glue to let system_server use it

Kernel

ls -l /dev/abs

crw------- system system 249, 0 abs

echo “Hello ABS” > /dev/abs

cat /dev/abs

hELLO abs

Kernel

HAL: Hardware Abstraction Layer02

Hal
Hardware Abstraction Layer

C library

Expose hardware feature

Part of AOSP, often closed source

With this hardware, I want to get some data (abs_getdata), put new
data (abs_putdata) and clear the buffer (abs_clear).
This is here that you will put your device specific code.
This code is not android specific

Hal
Hardware Abstraction Layer

ssize_t abs_getdata(void *buf, size_t count);

ssize_t abs_putdata(const void *buf, size_t count);

void abs_clear(void);

libabs.h

=> libabs.so

System server run java code.
We need a bridge between java (system_server) and C (hal) =>
JNI

Hal
Hardware Abstraction Layer

JNI: Java Native Interface03

Jni
Java Native Interface

Simple glue between C and Java

Do not do smart thing here

Expose your hal function through jni
Manage error code with exceptions
Only glue code

Jni
Java Native Interface

static void jni_abs_putData(JNIEnv *env, jclass cls, jstring string)
{

int ret;
const char *buff = (*env)->GetStringUTFChars(env, string, NULL);
int length = (*env)->GetStringLength(env, string);
ret = abs_putdata(buff, length);
if (ret < 0) {

 ThrowAbsException(env, "fail to put data");
}
(*env)->ReleaseStringUTFChars(env, string, buff);

}

framework/base/abs/jni/android.abs.Abs.c

Jni
Java Native Interface

package android.abs;

public class Abs {
static {

 System.loadLibrary("abs_jni");
}

public native static void clear();
public native static String getData() throws AbsException;
public native static void putData(String in) throws AbsException;

}

framework/base/abs/java/android/abs/Abs.java

Jni
Java Native Interface

package android.abs;
/* @hide */
public class Main {
 public static void main(String[] args) {
 try {
 Abs.putData("Hello ABS");
 String out = Abs.getData();
 System.out.println(out);
 Abs.clear();
 } catch (Exception e) {
 System.out.println(e.toString());
 }
 }
}

Trick: Add a Main.java

Allow you check that everything works from java to the device

Jni
Java Native Interface

Trick: Add a Main.java

$ dalvikvm -cp /system/framework/framework.jar android.abs.Main

Jni
Java Native Interface

System Server04

System server is called by the application (framework) through the
binder protocol
System server run as the “system” user

System Server

Must Implement AIDL interface

package android.abs;
/** {@hide} */
interface IAbsManager
{

void clear();
String getData();
void putData(String data);

}

framework/base/abs/java/android/abs/IAbsManager.aidl

The binder RPC allow us to check the permission of the caller
live into service.jar

System Server

/** @hide */
public class AbsService extends IAbsManager.Stub {
 private static final String TAG = "AbsService";
 private Context mContext;

 public AbsService(Context context) {
 mContext = context;
 }

 public String getData() {
 enforceAccessPermission();
 try {
 return Abs.getData();
 } catch(AbsException e) {
 Slog.e(TAG, "cannot getdata");
 }
 return null;
 }
 private void enforceAccessPermission() {
 mContext.enforceCallingOrSelfPermission(android.Manifest.permission.ABS_ACCESS,
 "AbsService");
 }

framework/base/services/abs/java//android/server/abs/AbsService.java

start our service

System Server

private void startOtherServices() {
 …
 try {
 Slog.i(TAG, "Abs Service");
 absService = new AbsService(context);
 ServiceManager.addService(Context.ABS_SERVICE, absService);
 } catch (Throwable e) {
 reportWtf("starting abs Service", e);
 }
}

Hack SystemServer.java

Note that we decide that our device will be manageable by
system_server. However we could have created a special daemon
to deal with the device and let system_server talk to the daemon.
The daemon could run as root
This is another choice of architecture but do not change much

System Server

Framework05

Framework

package android.abs;

public class AbsManager {
IAbsManager mService;
/** @hide */
public AbsManager(IAbsManager service) {

 mService = service;
}

public String getData() {
 try {
 return mService.getData();
 } catch (RemoteException e) {
 ...
 }
 return null;

}
}

frameworks/base/abs/java/android/abs/AbsManager.java

Framework

static {
 ...
 registerService(ABS_SERVICE, new ServiceFetcher() {
 public Object createService(ContextImpl ctx) {
 IBinder b = ServiceManager.getService(ABS_SERVICE);
 IAbsManager service = IAbsManager.Stub.asInterface(b);
 return new AbsManager(service);
 }});
}

Hack ContextImpl.java

Framework

make update-api && make sdk

Configure IDE

App06

App

App

App

Conclusion06

Conclusion

Conclusion

Easy to add new driver and expose an “Android
API”

Most of the kernel and HAL is reusable

Lot of Glue Code

Conclusion

https://thenewcircle.com/s/post/1044/remixing_android

http://processors.wiki.ti.com/index.php/Android-
Adding_SystemService

https://source.android.com/devices/

https://thenewcircle.com/s/post/1044/remixing_android
https://thenewcircle.com/s/post/1044/remixing_android
http://processors.wiki.ti.com/index.php/Android-Adding_SystemService
http://processors.wiki.ti.com/index.php/Android-Adding_SystemService
http://processors.wiki.ti.com/index.php/Android-Adding_SystemService
https://source.android.com/devices/
https://source.android.com/devices/

Thank you !

Cédric Cabessa
ccabessa@genymobile.com
www.genymobile.com

https://github.com/CedricCabessa/abs2015

http://goo.gl/nDVszZ

http://www.genymobile.com
http://www.genymobile.com
https://github.com/CedricCabessa/abs2015
https://github.com/CedricCabessa/abs2015
http://goo.gl/nDVszZ
http://goo.gl/nDVszZ

