KERGMAL

Project
Current and future

Pierre FICHEUX - pierre.ficheux@smile.fr
June 2023

Embedded Linux expert

Not a flight software (nor space industry) specialist !
CTO for Smile (ECS), a french software service provider
Teacher for Embedded Linux (Yocto), Linux RT, AOSP

whoami

Some RTOS

Most of “embedded OS” are RTOS

Proprietary (VxWorks, pSOS, VRTX, LynxOS, uC/OS-Il)

Open source (RTEMS, FreeRTOS, eCOS, Zephyr)

homemade OS

UNIX (and so Linux) was not designed as a RTOS

Linux real-time scheduling needs kernel patches (PREEMPT_RT,
RTAI, Xenomai)

POSIX scheduling policy

The Linux kernel is POSIX compliant provides the following
policies:

o SCHED_OTHER (priority 0, no real-time)

o SCHED_FIFO (priority from 1 to 99)

o SCHED_RR (same as SCHED_FIFO with “round-robin”)
o SCHED_DEADLINE (EDF + CBS algorithms for the Linux kernel)

Policy and priority can be statically defined in the source code
The “chrt” command is useful to define the policy and priority for a
process

Policy and priority must be defined as “attributes” for a pthread

Measuring the kernel latency

A real-time application is based on periodic tasks

One can evaluate the performance with the following procedure:
o Start a real-time periodic task (SCHED_FIFO, SCHED_RR,
SCHED_DEADLINE)
o Increase the system load
o Compare the measured deadline with the theoretical one (the difference is
called “jitter” or “latency”)

Several tools are available for testing, such as the “rt-tests”
package (available in standard distros + Yocto, Buildroot)

o cyclictest (create real-time tasks)
o hackbench (increase system load with non real-time tasks)

Use “Ftrace” for a real application

Improving the performances

e Using kernel preemption options (obsolete)
e Using the PREEMPT_ RT patch
e Using the co-kernel approach (RTAI / Xenomai)

Preemption options

Designed for 2.4
o “preempt-kernel” by Robert Love (MontaVista)
o “low-latency” by Andrew Morton
Similar features integrated to mainline in 2.6 and still available in

6.x !
o CONFIG_PREEMPT_NONE
o CONFIG_PREEMPT_VOLUNTARY (“explicit” preemption points added by Ingo
Molnar in 2005, default option)
o CONFIG_PREEMPT (original preemption option, Robert Love)

No Forced Preemption (Server
Voluntary Kernel Preemption (Desktop)

) Preemptible Kernel (Low-Latency Desktop)f

PREEMPT RT

Started as an experimental branch by Ingo Molnar in 2004

First patch published for 2.6.9

Designed for the mainline kernel

Maintained by Ingo Molnar, Steven Rostedt and Thomas Gleixner

Finally became an official project for the Linux Foundation in 2015
named the “Real Time Linux Collaborative Project”

Mainlining the PREEMPT _RT has been around since 2008 but it’s
still not achieved today

Easy to install (one kernel patch), same user/kernel API

Good performance

Ready-to-run distributions available (RHEL and Ubuntu)

Some PREEMPT RT features

High resolution timers support (hrtimer)

Dynamic ticks (CONFIG_NO HZ, CONFIG_NO_HZ FULL)
Priority inheritance

Threaded interrupt model

The maximum jitter for the Raspberry Pi 3 is <100 ps
Select CONFIG_PREEMPT_RT_FULL

No Forced Preemption (Server)
voluntary Kernel Preemption (Desktop)
Preemptible Kernel (Low-Latency Desktop)

()
()
()
Preemptible Kernel (Basic RT
éxa

Co-kernel (the truth is elsewhere ?)

A very different approach !
Adding a dedicated real-time kernel to the Linux kernel
A real-time sub-system based on kernel modules

Two “domains” for the application
o Real-time domain for RT threads
o Linux domain for NRT threads
Several models

o Kernel only (RTLinux, the ancestor!)
o Kernel and (partial) user space (RTAI, a “fork” of RTLinux)
o Kernel and (full) user space (Xenomai)

User space support is very important for the industry regarding
licensing (GPL vs LGPL) !

10

Co-kernel principle

Use a real-time specific scheduler (not the Linux scheduler)

Interrupt handling virtualization by a “micro kernel”
o The kernel does not not mask interrupts
o real-time interrupts have higher priority

Linux is an “idle task” for the real-time kernel

real-time ‘ Linux
tasks kernel

St

Micro-kernel

1

RTLinux architecture (old)

Linux process

User space
{ (data fetching)

Linux process (IHM) ’

8,
\‘Re | time
| FiFO

Real time task 3
application

A

¥

Real time task 2
Module posixio

Linux kernel

Real time task 1
Module sched

Software interrupt
Real time kernel: RTLinux

Hardware interrupt

12

Xenomal

Designed by Philippe Gerum in 2001 for RTOS APl emulation (aka
“skins”) such as VxWorks, VRTX, etc.

RTAI collaboration to work around problems with the RTLinux
patent (RTAl/fusion in 2004)

Since 3.x, two choices for the architecture:
o co-kernel (Cobalt), mostly used
o single kernel (Mercury) — skins over PREEMPT_RT
Interrupt handling virtualization
o “Dovetail” (from the EVL project) for kernel >= 5.10
o |-pipe for a older kernels
The current stable version is 3.2.1

Xenomai 4 is EVL - https://evlproject.org/ (using “Dovetail”)

13

Xenomai 3 / Cobalt

Device drivers

(RTDM-based)
©
| =
—
(<%}
" 4
Uil aataanaia i * libcobalt (POSIX subset + extensions)
B copperplate interface
1) () {0 non-POSIX real-time APIs

Applications { D

s
o
User

14

The RTDM API

A RTDM driver is a Linux module
A RTDM driver runs in the Xenomai domain

Close to the Linux kernel API but one needs to adapt the drivers to
the RTDM API !

15

Xenomai “skins”

Alchemy (aka “native”)

POSIX

pSOS

VxWorks

Smokey (test API)

RTDM (kernel space)

Several skins are usable at the same time

Very nice feature as it provides POSIX source compliance

16

Xenomai &2

The most efficient real-time extension for the Linux kernel (better
than PREEMPT _RT)

A real-time task runs in user space (LGPL)

Provides “skins” for RTOS API (POSIX, VxWorks, VRTX, etc.)
Used (and maintained) by big companies such as SIEMENS
Yocto and Buildroot integration

17

Small community
Lacks of examples (except from some users)

Cobalt is difficult to set up (and use) because of:

o Most of the time, a mainline kernel is mandatory
o User/ kernel installation
o RTDM (Real Time Driver Model, specific driver API)

Not an official project from the Linux Foundation
No “Xenomai ready” distribution

Xenomai @&

18

Domains and I-pipe

Guest OS (Linux, Xenomai) run in prioritized “domains”
Xenomai runs in the highest priority domain

Linux (aka “root”) runs in the lowest priority domain

For each event (interrupts, exceptions, syscalls, etc.), the
domains may handle the event or pass it down the pipeline
Calls to standard IRQ handlers should be replaced by calls to
I-pipe functions

Read the article “Life with ADEOS”

19

Interrupt dispatching principle

If the root domain is "stalled"
7 save the IRQ n the I—log buffer

4

rRqa Per~CPU Pupe_lme_ L
Interrupts L traps === S v mqmm e e e e e e e e - >

Xenomai domain [Virtual IRQ| "Roct” domain

low Pﬁor‘.‘ttf

Xenomai

Linux kemel
ke,mel

20

Dovetall

Initially a fork of I-pipe for the EVL project !

Introducing a high-priority execution stage enabling all device
interrupts to behave like NMls

Increasing the possibility to maintain Dovetail with common kernel
development knowledge (porting is simpler)

Tracking the most recent kernel releases

Available from Xenomai 3.2 (no backport to 3.1)

Instead of patching the kernel we use the “Dovetail ready” kernel
(based on the mainline)

21

Installing Xenomai

More complex than PREEMPT _RT, as you need:

o A compatible kernel (Dovetail ready of I-pipe compatible)
o The Xenomai sources

Build the kernel

o $./scripts/prepare-kernel.sh --linux=<kernel-path> --arch=<arch>
[--ipipe=<ipipe-path>]
o $ make

Build the user space libraries, demos, etc. (Autotools)

o S configure --host=<cross-toolchain-name> --enable-smp
o $ make

Use Yocto (or Buildroot) !

o Add the provided layer for Xenomai support (BSP dependent)
o Use BrR2 PACKAGE XENOMAI and BR2 LINUX KERNEL EXT XENOMAT for Buildroot

22

Testing Xenomai

Very close to the PREEMPT_RT one:
o Periodic task (RT domain)
o System stress (Linux domain)

Xenomai provides “latency” and its own “cyclictest”
Start latency (the default period is 1 ms)

o # latency

Use “dohell” (or hackbench) to stress the system
o # dohell 600

The maximum jitter for the Raspberry Pi 3 is about 30 us

23

Xenomal application basics

A Xenomai application is a Linux program using Xenomai libraries

The application runs on two “domains”:
o Linux for non real-time threads
o Xenomai for real-time threads

Most of the time, the “main” function is managed by the Linux
domain
RT and NRT domains communicate with the XDDP protocol

24

Xenomal application basics

A=

w XDDP
<

Linux thread (WRT)

Xenomai thread (RT)

user space
/ dev/Poo / AQV/ f"tdm/‘:om P
kemel space
Xenomaoi kemel
Linux kemel/driver RDTM driver

25

Designing a Xenomai application

“Segregate” RT / NRT code

o RT threads are managed by Xenomai
o NRT threads (i.e. SCHED_OTHER) managed by Linux

Select an API (aka “skin”)

o POSIX is the best for portability
o Xenomai native/alchemy skin is usable too
o Other skins (such as VxWorks) are useful for porting

You can force using Linux system calls with real prefix such
adS real pthread create ()

Lock the allocated memory with:
o mlockall (MCL CURRENT | MCL FUTURE)

26

Compiling a Xenomai application

Based on the “xeno-config” script:
o Created when building Xenomai
o Defines path and options depending on skins

Compilation options examples:

o $ xeno-config --cc

o $ xeno-config --posix --cflags

© $ xeno-config --posix --1ldflags
o S xeno-config --native --cflags
o $ xeno-config --native --1dflags

Some external projects for CMake support

27

Running / debugging an application

Use the /proc/xenomai pseudo-filesystem

Be careful about domain migration (MSW) !
o MSW occurs when using Linux system call from Xenomai domain
o Thanks to the SIGDEBUG signal, it's possible to catch a migration with a signal
handler

Ftrace is available for Xenomai (Cobalt events)

© # trace-cmd record -e "cobalt *"
O # trace-cmd report

28

EVL (Xenomai 4)

EVL was originally a fork of the Xenomai 3 Cobalt core

Based on Dovetail

Small footprint (just like before)

An application is (currently) based on “libevl”

Xenomai 4 will provide two direct interfaces to the underlying EVL

core:
o ‘“libevl” which is readily available
o POSIX from “libcobalt” (Xenomai 3)

29

Common Xenomai Platform (CXP)

Applications
libalchemy libevl libcobalt
I I I
I I I
libcopperplate | |
I I I
I I I
libcobalt | |
I I I
v v v
(Cobalt core) (EVL core)

Xenomai 3.x Xenomal 4

Xenomai 4 demo

Based on Yocto 4.1

Designed by Lukasz Majewski (DENX) for the Raspberry Pi 4
The “latmus” benchmark is used instead of “latency”

The “hackbench” tool is usable

31

Questions ?

32

References

https://source.denx.de/Xenomai/xenomai/-/wikis/home
https://source.denx.de/Xenomai/xenomai/-/wikis/Common Xenomai Platform

Xenomai 3.x over Dovetail https://www.mail-archive.com/xenomai@xenomai.org/msg18635.html

https://eviproject.org/overview

EVL application https://eviproject.org/core/user-api

Xenomai 4 benchmarks https://evilproject.org/core/benchmarks
Xenomai 4 on Pi 4 https://source.denx.de/lukma/meta-xenomai-demo

33

