
Project
Current and future

Pierre FICHEUX - pierre.ficheux@smile.fr
June 2023

whoami

● Embedded Linux expert
● Not a flight software (nor space industry) specialist !
● CTO for Smile (ECS), a french software service provider
● Teacher for Embedded Linux (Yocto), Linux RT, AOSP

2

Some RTOS
● Most of “embedded OS” are RTOS
● Proprietary (VxWorks, pSOS, VRTX, LynxOS, µC/OS-II)
● Open source (RTEMS, FreeRTOS, eCOS, Zephyr)
● homemade OS
● UNIX (and so Linux) was not designed as a RTOS
● Linux real-time scheduling needs kernel patches (PREEMPT_RT,

RTAI, Xenomai)

3

POSIX scheduling policy

● The Linux kernel is POSIX compliant provides the following
policies:

○ SCHED_OTHER (priority 0, no real-time)
○ SCHED_FIFO (priority from 1 to 99)
○ SCHED_RR (same as SCHED_FIFO with “round-robin”)
○ SCHED_DEADLINE (EDF + CBS algorithms for the Linux kernel)

● Policy and priority can be statically defined in the source code
● The “chrt” command is useful to define the policy and priority for a

process
● Policy and priority must be defined as “attributes” for a pthread

4

Measuring the kernel latency

● A real-time application is based on periodic tasks
● One can evaluate the performance with the following procedure:

○ Start a real-time periodic task (SCHED_FIFO, SCHED_RR,
SCHED_DEADLINE)

○ Increase the system load
○ Compare the measured deadline with the theoretical one (the difference is

called “jitter” or “latency”)

● Several tools are available for testing, such as the “rt-tests”
package (available in standard distros + Yocto, Buildroot)

○ cyclictest (create real-time tasks)
○ hackbench (increase system load with non real-time tasks)

● Use “Ftrace” for a real application

5

Improving the performances

● Using kernel preemption options (obsolete)
● Using the PREEMPT_RT patch
● Using the co-kernel approach (RTAI / Xenomai)

6

Preemption options
● Designed for 2.4

○ “preempt-kernel” by Robert Love (MontaVista)
○ “low-latency” by Andrew Morton

● Similar features integrated to mainline in 2.6 and still available in
6.x !

○ CONFIG_PREEMPT_NONE
○ CONFIG_PREEMPT_VOLUNTARY (“explicit” preemption points added by Ingo

Molnar in 2005, default option)
○ CONFIG_PREEMPT (original preemption option, Robert Love)

7

PREEMPT_RT
● Started as an experimental branch by Ingo Molnar in 2004
● First patch published for 2.6.9
● Designed for the mainline kernel
● Maintained by Ingo Molnar, Steven Rostedt and Thomas Gleixner
● Finally became an official project for the Linux Foundation in 2015

named the “Real Time Linux Collaborative Project”
● Mainlining the PREEMPT_RT has been around since 2008 but it’s

still not achieved today
● Easy to install (one kernel patch), same user/kernel API
● Good performance
● Ready-to-run distributions available (RHEL and Ubuntu)

8

Some PREEMPT_RT features

● High resolution timers support (hrtimer)
● Dynamic ticks (CONFIG_NO_HZ, CONFIG_NO_HZ_FULL)
● Priority inheritance
● Threaded interrupt model
● The maximum jitter for the Raspberry Pi 3 is < 100 µs
● Select CONFIG_PREEMPT_RT_FULL

9

Co-kernel (the truth is elsewhere ?)

● A very different approach !
● Adding a dedicated real-time kernel to the Linux kernel
● A real-time sub-system based on kernel modules
● Two “domains” for the application

○ Real-time domain for RT threads
○ Linux domain for NRT threads

● Several models
○ Kernel only (RTLinux, the ancestor !)
○ Kernel and (partial) user space (RTAI, a “fork” of RTLinux)
○ Kernel and (full) user space (Xenomai)

● User space support is very important for the industry regarding
licensing (GPL vs LGPL) !

10

Co-kernel principle
● Use a real-time specific scheduler (not the Linux scheduler)
● Interrupt handling virtualization by a “micro kernel”

○ The kernel does not not mask interrupts
○ real-time interrupts have higher priority

● Linux is an “idle task” for the real-time kernel

11

RTLinux architecture (old)

12

Xenomai
● Designed by Philippe Gerum in 2001 for RTOS API emulation (aka

“skins”) such as VxWorks, VRTX, etc.
● RTAI collaboration to work around problems with the RTLinux

patent (RTAI/fusion in 2004)
● Since 3.x, two choices for the architecture:

○ co-kernel (Cobalt), mostly used
○ single kernel (Mercury) → skins over PREEMPT_RT

● Interrupt handling virtualization
○ “Dovetail” (from the EVL project) for kernel >= 5.10
○ I-pipe for a older kernels

● The current stable version is 3.2.1
● Xenomai 4 is EVL - https://evlproject.org/ (using “Dovetail”)

13

Xenomai 3 / Cobalt

14

The RTDM API

● A RTDM driver is a Linux module
● A RTDM driver runs in the Xenomai domain
● Close to the Linux kernel API but one needs to adapt the drivers to

the RTDM API !

15

Xenomai “skins”

● Alchemy (aka “native”)
● POSIX
● pSOS
● VxWorks
● Smokey (test API)
● RTDM (kernel space)
● Several skins are usable at the same time
● Very nice feature as it provides POSIX source compliance

16

Xenomai 😁
● The most efficient real-time extension for the Linux kernel (better

than PREEMPT_RT)
● A real-time task runs in user space (LGPL)
● Provides “skins” for RTOS API (POSIX, VxWorks, VRTX, etc.)
● Used (and maintained) by big companies such as SIEMENS
● Yocto and Buildroot integration

17

Xenomai 😢
● Small community
● Lacks of examples (except from some users)
● Cobalt is difficult to set up (and use) because of:

○ Most of the time, a mainline kernel is mandatory
○ User / kernel installation
○ RTDM (Real Time Driver Model, specific driver API)

● Not an official project from the Linux Foundation
● No “Xenomai ready” distribution

18

Domains and I-pipe

● Guest OS (Linux, Xenomai) run in prioritized “domains”
● Xenomai runs in the highest priority domain
● Linux (aka “root”) runs in the lowest priority domain
● For each event (interrupts, exceptions, syscalls, etc.), the

domains may handle the event or pass it down the pipeline
● Calls to standard IRQ handlers should be replaced by calls to

I-pipe functions
● Read the article “Life with ADEOS”

19

Interrupt dispatching principle

20

Dovetail

● Initially a fork of I-pipe for the EVL project !
● Introducing a high-priority execution stage enabling all device

interrupts to behave like NMIs
● Increasing the possibility to maintain Dovetail with common kernel

development knowledge (porting is simpler)
● Tracking the most recent kernel releases
● Available from Xenomai 3.2 (no backport to 3.1)
● Instead of patching the kernel we use the “Dovetail ready” kernel

(based on the mainline)

21

Installing Xenomai

● More complex than PREEMPT_RT, as you need:
○ A compatible kernel (Dovetail ready of I-pipe compatible)
○ The Xenomai sources

● Build the kernel
○ $./scripts/prepare-kernel.sh --linux=<kernel-path> --arch=<arch>

[--ipipe=<ipipe-path>]
○ $ make

● Build the user space libraries, demos, etc. (Autotools)
○ $ configure --host=<cross-toolchain-name> --enable-smp
○ $ make

● Use Yocto (or Buildroot) !
○ Add the provided layer for Xenomai support (BSP dependent)
○ Use BR2_PACKAGE_XENOMAI and BR2_LINUX_KERNEL_EXT_XENOMAI for Buildroot

22

Testing Xenomai

● Very close to the PREEMPT_RT one:
○ Periodic task (RT domain)
○ System stress (Linux domain)

● Xenomai provides “latency” and its own “cyclictest”
● Start latency (the default period is 1 ms)

○ # latency

● Use “dohell” (or hackbench) to stress the system
○ # dohell 600

● The maximum jitter for the Raspberry Pi 3 is about 30 µs

23

Xenomai application basics

● A Xenomai application is a Linux program using Xenomai libraries
● The application runs on two “domains”:

○ Linux for non real-time threads
○ Xenomai for real-time threads

● Most of the time, the “main” function is managed by the Linux
domain

● RT and NRT domains communicate with the XDDP protocol

24

Xenomai application basics

25

Designing a Xenomai application

● “Segregate” RT / NRT code
○ RT threads are managed by Xenomai
○ NRT threads (i.e. SCHED_OTHER) managed by Linux

● Select an API (aka “skin”)
○ POSIX is the best for portability
○ Xenomai native/alchemy skin is usable too
○ Other skins (such as VxWorks) are useful for porting

● You can force using Linux system calls with __real_ prefix such
as __real_pthread_create()

● Lock the allocated memory with:
○ mlockall (MCL_CURRENT | MCL_FUTURE)

26

Compiling a Xenomai application

● Based on the “xeno-config” script:
○ Created when building Xenomai
○ Defines path and options depending on skins

● Compilation options examples:
○ $ xeno-config --cc
○ $ xeno-config --posix --cflags
○ $ xeno-config --posix --ldflags
○ $ xeno-config --native --cflags
○ $ xeno-config --native --ldflags

● Some external projects for CMake support

27

Running / debugging an application

● Use the /proc/xenomai pseudo-filesystem
● Be careful about domain migration (MSW) !

○ MSW occurs when using Linux system call from Xenomai domain
○ Thanks to the SIGDEBUG signal, it’s possible to catch a migration with a signal

handler

● Ftrace is available for Xenomai (Cobalt events)
○ # trace-cmd record -e "cobalt_*"
○ # trace-cmd report

28

EVL (Xenomai 4)
● EVL was originally a fork of the Xenomai 3 Cobalt core
● Based on Dovetail
● Small footprint (just like before)
● An application is (currently) based on “libevl”
● Xenomai 4 will provide two direct interfaces to the underlying EVL

core:
○ “libevl” which is readily available
○ POSIX from “libcobalt” (Xenomai 3)

29

Common Xenomai Platform (CXP)

30

Xenomai 4 demo

● Based on Yocto 4.1
● Designed by Lukasz Majewski (DENX) for the Raspberry Pi 4
● The “latmus” benchmark is used instead of “latency”
● The “hackbench” tool is usable

31

Questions ?

32

References
● https://source.denx.de/Xenomai/xenomai/-/wikis/home
● https://source.denx.de/Xenomai/xenomai/-/wikis/Common_Xenomai_Platform
● Xenomai 3.x over Dovetail https://www.mail-archive.com/xenomai@xenomai.org/msg18635.html
● https://evlproject.org/overview
● EVL application https://evlproject.org/core/user-api
● Xenomai 4 benchmarks https://evlproject.org/core/benchmarks
● Xenomai 4 on Pi 4 https://source.denx.de/lukma/meta-xenomai-demo

33

