BeagleBoard Trainer

From eLinux.org
Revision as of 18:34, 10 March 2010 by Rkherod (talk | contribs) (Atmega328 (Arduino Compatible))
Jump to: navigation, search

Trainer1a.jpg

Trainer Features:

  • I2C interface(+3.3v or +5v selectable)
  • SPI inteface (+3.3v)
  • GPIO's(+3.3v)
  • Large prototyping area (0.1" x 0.1" matrix with access to power bus)
  • Atmega328 processor (user programmable)
    • Arduino compatible
    • ATmega328 power is +3.3v or +5v selectable
    • Communicate to the ATmega328 via the BeagleBoard's second RS-232 uart

Available from www.tincantools.com]]

Hardware

Trainer Rev-A


I²C Interface

The Trainer provides an interface to the BeagleBoard's I²C port. The I²C signals are level translated to either +3.3V or +5V (user selectable with a jumper). The I²C signals are located next the the prototyping area.

How to access the I2C bus (from software): http://i2c.wiki.kernel.org/index.php/Linux_2.6_I2C_development_FAQ

SPI Interface

The Trainer provides an interface the the BeagleBoard's SPI port and the signals are level translated to +3.3V. The SPI signals are located next to the prototyping area.

GPIO Interface

The Trainer provides an interface to several of the BeagleBoard's GPIO signals. The GPIO signals are level translated to +3.3V and are located next to the prototyping area.

Serial EEPROM

The Trainer board provides an AT24C01 serial EEPROM that contains a Vendor ID and a Device ID that the BeagleBoard uses to identify the type of board connected to the expansion header. This information enables the BeagleBoard to auto-configure the pin mux for signals needed by the Trainer. More information can be found on the Beagle Board Pin Mux Page.

Atmega328 (Arduino Compatible)


Prototyping / Breakout Area

The Trainer provides a prototyping / breakout area with a standard 0.1" x 0.1" spacing matrix. The user can use this area to prototype their design and interface it to either the BeagleBoard's level translated signals or to the ATmega328's I/O pins.

Soldering BeagleBoard's Expansion Header

This is a quick guide showing you how to solder the 2x14 Header into the BeagleBoard’s Expansion connector (J3).

Zippy2-expansion connector1.jpg

Insert the 2x14 Header’s SHORT PINS from the back side of the BeagleBoard into the BeagleBoard’s expansion connector (J3).


Zippy2-expansion connector2.jpg

Position the 2x14 Header so the LONG PINS are on the BACK SIDE of the BeagleBoard.


Zippy2-expansion connector3.jpg

Solder the SHORT PINS of the 2x14 Header from the TOP SIDE of the BeagleBoard.

Attaching to the BeagleBoard

Zippy2-expansion connector7.jpg

Attach the four board spacers with the screws provided.


Zippy2-expansion connector4.jpg

Connect the expansion board onto the BACK SIDE of the BeagleBoard by mating with the 2x14 Header you just soldered. Make sure all of the pins align correctly.


Zippy2-expansion connector5.jpg

Continue pushing the two boards together until the connectors mate together.


Zippy2-expansion connector6.jpg

Attach the male standoffs as shown.


Zippy2-expansion connector8.jpg


Where to purchase the Trainer board

The Trainer board can be purchased from www.tincantools.com.