
Android Platform Optimizations

1© Synopsys 2011

ELC-Europe
Prague, October 2011
Ruud Derwig

Helping Design the Chips Inside
Data Center & NetworkingDigital Home Computing & PeripheralsMobile Multimedia

2© Synopsys 2011

Industrial Military / AerospaceAutomotive OtherMedical

Agenda

Market & value drivers

What to optimize?

3© Synopsys 2011

How to optimize?

Results & conclusion

• Smartphones
• Tablets
• TV
• STB / multimedia

Android Markets

4© Synopsys 2011

• STB / multimedia

• Others / new

• Smartphones
• Tablets
• TV
• STB / multimedia

Android Markets

5© Synopsys 2011

• STB / multimedia

• Others / new

• Smartphones
• Tablets
• TV
• STB / multimedia

Android Markets

6© Synopsys 2011

• STB / multimedia

• Others / new

• Power consumption
� optimize performance / mW

• Product cost
� optimize performance / area
� optimize development efficiency

Key Value Drivers &
System Architecture Choices

7© Synopsys 2011

� optimize development efficiency

• Hardware – Software trade-offs
– Maximum flexibility & developer efficiency : “virtual everything”

• PC model, multi-GHz SMP processor centric designs

– Minimal power & optimal performance: “dedicated hardware”
• dedicated, fixed function device

– Sweetspot : “heterogeneous, HW accelerated multi-cor e”
• Mix of CPU, DSP, and dedicated HW

Market & value drivers

What to optimize? AMBA 3 AXI & AMBA 2.0 AHB

USB
controller

PCIe
controller

DDR
PHY

DDR
controller

USB
PHY

PCIe
PHY

ARC Host
processor

HDMI
controller

HDMI
PHY

Audio
Codec

ARC Audio
processor

ADCs
DACs

processing
Signal

processing

Video
Front End

ARC Video
processor

Agenda

8© Synopsys 2011

How to optimize?

Results & conclusion

UART

AMBA APB

GPIO

Ethernet
controller

SATA
controller

SD/MMC
controller

XAUI
PHY

SATA
PHYI2C

MIPI DigRF,
CSI, DSI

controller

MIPI D-PHY
M-PHY

Embedde
d

Memories

Embedde
d

Memories
(NVMs

&SRAMs)

Datapath

Logic Libraries

• Important,
• … but not Android specific

• Optimization options

Linux Kernel & Library Optimizations

9© Synopsys 2011

• Optimization options
– Optimize hotspots

• compiler
• handwritten assembler

– CPU hardware optimizations
• MMU
• special instructions

Dalvik Virtual Machine

• “Java” * virtual machine
– Register-based architecture (Java VMs are stack machines). Dalvik

registers are typically stored in memory (on the stack, like local
variables in C).

– Own bytecode

• Three virtual machines
– Portable: completely C-based, in fact one large switch{} statement with

10© Synopsys 2011

– Portable: completely C-based, in fact one large switch{} statement with
a case x: for every Dalvik opcode.

– Fast (a.k.a. MTERP): assembly-coded handlers for every Dalvik
opcode, which are aligned on 64 bytes addresses, so that the address
of the handler can be easily calculated from the opcode, saving a
lookup.

– JIT: just-in-time compiler, initially starts as fast/mterp interpreter, but will
identify ‘hot’ traces and pass these to the compiler thread.

*Dalvik is a clean-room implementation of Java for copyright reasons. The syntax is similar.

Android Media Player Architecture

Media Player App

Media Player App
Framework

JAVA

Linux User Space

11© Synopsys 2011

Media Player
Service

AudioFlinger

Alsa Kernel
Driver

Other Audio
Driver

…
Linux User Space

Linux Kernel Space

Android Media Player Architecture

StageFright
Player

Media Player Service

Media Player App

Media Player App
Framework

Media Player
Service

…

JAVA

Linux User Space

� Google’s player of choice is the Stagefright
• multi-format A/V player, newly developed for Android
• Simple fixed graph – selects demuxer and decoder

based on file extension
� Alternatives exist

• Gstreamer based
• proprietary / legacy

GStreamer
Player

12© Synopsys 2011

OpenCore
Player

Vorbis
Player

Player

MIDI
Player

AudioFlinger

Alsa Kernel
Driver

Other Audio
Driver

Linux Kernel Space

Demuxer
(Parse container

format)

Video
Decoding

Audio
Decoding

Video Rendering
(� SurfaceFlinger)

Audio Rendering
(� AudioFlinger)

Reader
(Read from Source)

Player

Audio Optimization Option:
off-load audio processing to DSP

Audio Rendering
(AudioFlinger)

Demuxer
(Parse container

format)
Audio DecodingReader

(Read from Source)

GP-CPU

Audio DSP

13© Synopsys 2011

DSP
Audio Decoding

Control API

PostProcessing
(SonicFocus)

Control API

ARC Sound Processor

Audio DSP

Android Graphics - Architecture

• 2D
– Canvas/Skia
– OpenVG

• 3D OpenGL

Application

Canvas

Skia

Render
Script

14© Synopsys 2011

• 3D
– OpenGL-ES 1.x
– OpenGL-ES 2

• Renderscript
– Expose native GPU/SMP to (portable) applications
– C99 ->LLVM intermediate bitcode -> machine code

OpenGLSkia

Surface

Android Graphics - Compositor

OpenGL

Application

Canvas

Skia

Surface

Render
Script

OpenGL

Application

Canvas

Skia

Surface

Render
Script

15© Synopsys 2011

2D blitter
OpenGL

GPU

SurfaceFlinger

Pixel
Flinger

• Graphics drawing/rendering
– Software/assembler optimization

• Skia, PixelFlinger
– Hardware acceleration

• GPU (OpenGL-ES 2)
• 2D accelerator (OpenVG compatible or other)
• Memory architecture, caching

Graphics Optimization Options

16© Synopsys 2011

• Memory architecture, caching
– Renderscript

• Surface Composition
– Scaling, colorspace conversion

• Custom instructions
• GPU
• Dedicated hardware acceleration (bitblit)

What to optimize?

Market & value drivers

Agenda

17© Synopsys 2011

How to optimize?

Results & conclusion

Optimized Designware ARC Android

� Full port of the Android
Froyo/Gingerbread
release to the ARC
processor architecture
and build environment

� Including NDK and SDK
to support Android

ARC Sound
Audio DSP

(work in progress)

18© Synopsys 2011

to support Android
application
building/porting

� Google/OHA Compatibility
Test Suite tested ARC Optimized

bionic C library

ARC Optimized
Dalvik VM

ARC Optimized
pixelflinger

ARC Linux kernel
and Drivers

ARC Optimized V8
JavaScript engine

(work in progress)

Differences between VM Implementations

Portable MTerp JIT

switch (opcode) {
case add: a = b + c;

break;
case sub: a = b – c;

break;
...

ld r0, [b]
ld r1, [c]
add r0, r0, r1
st r0, [a]
ld r0, [next_opcode]
asl r0, r0, 6
add r0, r13, r0

ld r0, [b]
ld r1, [c]
add r0, r0, r1
st r0, [a]

OR

19© Synopsys 2011

add r0, r13, r0
j [r0] add r20, r20, r21

ld r0, [next_opcode]
<pipeline stall>
ld.as r1, [jump_table, r0]
<pipeline stall>
j [r1]

20© Synopsys 2011

Reused from Google I/O presentation

Register- and Stack -based VMs

Example: a = b + c

Java Dalvik Dalvik for ARC

iload b
iload c
iadd
istore a

add-int a, b, c add-int a, b, c

21© Synopsys 2011

istore a

ld r0, [b]
push r0
ld r0, [c]
push r0
pop r0
pop r1
add r0, r0, r1
push r0
pop r0
st r0, [a]

ld r0, [b]
ld r1, [c]
add r0, r0, r1
st r0, [a]

add r20, r21, r22

Registers are only
saved/restored when

changing stack
frames or when

moving to interpreter

Audio Processing on DSP

Audio Rendering
(AudioFlinger)

Demuxer
(Parse container

format)
Audio DecodingReader

(Read from Source)

Control API Control API

GP-CPU

Audio DSP

22© Synopsys 2011

� Audio decoding and Post-processing off-loaded to ARC Sound Processor
� Special host Audio Decoder implementation that takes care of off-loading

� with standard host decoder interfaces, so seamless integration
� Post-processing control through Renderer on host (special Renderer or Renderer

plug-in component)

DSP
Audio Decoding

PostProcessing
(SonicFocus)

ARC Sound Processor

R
eader

Demuxer

R
enderer

Media Player App

Media Player App Framework

� MSF = Media Streaming Framework
ARC DSP optimized, lightweight
streaming framework

� MQX = Real-time Operating system

� RPC/IPC = Remote Procedure call /
Inter Processor Communication

StageFright Player
(Control API)

Post
Processing

(Control API)

Decoder

Stagefright

23© Synopsys 2011

Android Host Processor ARC Audio Processor(s) - AS2xx

MQX OS

RPC/
IPC

Android (Linux) OS

RPC/
IPC

Audio Data, Control

MSF Framework

Control API
Remote-d Control API

Processing
“ plug-in” De-

coder
Sonic
Focus

Decoder Wrapper

ARC Sound Remote-d MSF

OM
X
2

MSF

OM
X
2

MSF

OM
X
2

MSF

Android & Audio APIs

• Stagefright supports 2 types of interfaces
– OpenMax-IL : for re-use of OMX components
– Stagefright codec interface : for native Stagefright

codecs

• AudioFlinger uses dedicated interfaces
– standard implementation using “ALSA” exist
– developments ongoing (?) to support OpenSL-ES

Stagefright

IPC

24© Synopsys 2011

– developments ongoing (?) to support OpenSL-ES
Khronos standard (like OMX)

• SNPS API choice not yet made
– OMX-IL pro : open standard
– OMX-IL con: efficiency, complexity: standard by

committee…
– Stagefright pro : efficient integration with Stagefright
– Stagefright con : not an open standard, no deep

tunneling

codec

IPC

codec codec

• GStreamer Android Player
– see e.g. ELC-E 2010

presentation

• “The goal of the project is to
both allow hardware makers
to standardize on GStreamer

Alternative: Gstreamer

25© Synopsys 2011

to standardize on GStreamer
accross their software
platforms, but also to make
the advanced functionality of
GStreamer available on the
Android platform, like video
editing, DLNA Support and
Video conferencing.”

• Gstreamer-MSF integration
makes heterogeneous
multi-core SW development
transparent to user

• Instantiation of Gstreamer
element � instantiation of

GStreamer DSP Off-loading with
“Deep Tunneling”

Host CPU

G G G

Host-ARC

G

26© Synopsys 2011

Dataflow graph instantiated on Audio Subsystem

element � instantiation of
module on one of the ARC
cores

• Creation of link �
local connection or
core-crossing connection
between modules

ARC core #0 ARC core #1

M M Msink src

FIFO

FIFO

src

driver

ARC-ARC
Streaming

Host-ARC
Streaming

Local
Streaming

Gstreamer Deep Tunneling

27© Synopsys 2011

ARC HW Extensions

extension
instructions

ARC EIA (Extension Interface Automation):
• supports user defined custom instructions
• accelerates typical Dalvik (Java VM) and

pixelflinger (2D GUI) instruction sequences

Prefetcher:
• Eliminates pipeline stalls in high latency

memory environments
• L2$ not required in this case

ARC750D

I$ D$

28© Synopsys 2011

prefetch
unit

AXI bus

• L2$ not required in this case
• Configurable depending on application

VGA / HDMI / DSI
DDR memory (including frame buffer) display driver

I$ D$

CPU area, excluding memories

CPU + FPU

prefetcher

extra instructions

7 6 5 4 3 2 1 0

Leveraging the ARC EIA Capabilities
Example: Colour Space Conversion

ABGR8888

7 6 5 4 3 2 1 0

mask

7 6 5 4 3 2 1 0

7 6 5 4 3 2

shift right

mask

7 6 5 4 3

shift left7 6 5 4 3 2 1 0

7 6 5

8 operations are required for a
conversion from ABGR8888 to
RGB565.

This can be combined into one
single EIA instruction.

29© Synopsys 2011

7 6 5 4 3 2 1 0 7 6 5 4 3

7 6 5 4 3 7 6 5 4 3 2 7 6 5 4 3 RGB565

7 6 5 4 3 2
mask

shift right

bitwise or

mask7 6 5 4 3

bitwise or

bitwise or

Instruction Operands

ld.ab r1, [r4, 0x4]

and r2, r1, 0xf8

asl r2, r2, 8

and r3, r1, 0xfc00

lsr r11, r3, 5

or r2, r2, r11

and r3, r1, 0xf80000

lsr r11, r3, 19

or r2, r2, r11

stw.ab r2, [r5, 0x2]

bitwise or

Instruction Operands

ld.ab r1, [r4, 0x4]

upk8 r2, r1, r6

stw.ab r2, [r5, 0x2]

What to optimize?

Market & value drivers

Agenda

30© Synopsys 2011

How to optimize?

Results & conclusion

Optimizing Dalvik VM

31© Synopsys 2011

Optimizing Dalvik VM
Dalvik JIT Optimization

Relative Performance Compared to Interpreter Perfor mance

x 4.9 … and going

~20%

32© Synopsys 2011

Core
Mark

Caffeine
Mark

Without
L2 cache

1,9 4,9 /MHz

37 90 /mW

14 35 /MHz/mm 2

x 11.3 … and going

measurements are done on 50MHz FPGA
results are without performance gains from hardware extensions

40000

50000

60000

70000
E

xe
cu

tio
n

tim
e

(A
R

C
 c

yc
le

s)

Original Code - No prefetching
Code with Android extensions - No prefetching
Original code - Prefetching
Code with Android extensions - Prefetching

Optimizing Hardware
Custom Instructions & Prefetching

33© Synopsys 2011

0

10000

20000

30000

0 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(A

R
C

 c
yc

le
s)

Memory latency (cycles)

Linux kernel + ARC HW optimizations

34© Synopsys 2011

• There are more markets for Android than high-end smartphone
• There are more optimizations possible than relying on Moore’s law

for GHz multi-cores

• Optimize performance / mW & performance / area
• Sweetspot : “heterogeneous, HW accelerated multi-core”

Conclusions

35© Synopsys 2011

• Sweetspot : “heterogeneous, HW accelerated multi-core”
– Mix of CPU, DSP, and dedicated HW
– Highly optimized platform infrastructure SW hides heterogeneous complexities

• ‘Simple’ ARC processor with SW optimized Dalvik VM performs
equal or better as others, thanks to careful SW optimizations, and
the use of simple HW acceleration

– Custom instructions tailored for specific tasks
– Prefetcher iso. general purpose 2nd level cache
– DSP more efficient in audio processing than CPU

36© Synopsys 2011

Fast Forward to Predictable Success

