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• Power consumption
� optimize performance / mW

• Product cost
� optimize performance / area
� optimize development efficiency

Key Value Drivers & 
System Architecture Choices
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� optimize development efficiency

• Hardware – Software trade-offs
– Maximum flexibility & developer efficiency : “virtual everything”

• PC model, multi-GHz SMP processor centric designs

– Minimal power & optimal performance: “dedicated hardware”
• dedicated, fixed function device 

– Sweetspot : “heterogeneous, HW accelerated multi-cor e”
• Mix of CPU, DSP, and dedicated HW



Market & value drivers
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How to optimize?

Results & conclusion
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• Important,
• … but not Android specific

• Optimization options

Linux Kernel & Library Optimizations
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• Optimization options
– Optimize hotspots

• compiler
• handwritten assembler

– CPU hardware optimizations
• MMU
• special instructions



Dalvik Virtual Machine

• “Java” * virtual machine
– Register-based architecture (Java VMs are stack machines). Dalvik

registers are typically stored in memory (on the stack, like local 
variables in C).

– Own bytecode

• Three virtual machines
– Portable: completely C-based, in fact one large switch{} statement with 
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– Portable: completely C-based, in fact one large switch{} statement with 
a case x: for every Dalvik opcode.

– Fast (a.k.a. MTERP): assembly-coded handlers for every Dalvik
opcode, which are aligned on 64 bytes addresses, so that the address 
of the handler can be easily calculated from the opcode, saving a 
lookup.

– JIT: just-in-time compiler, initially starts as fast/mterp interpreter, but will 
identify ‘hot’ traces and pass these to the compiler thread.

*Dalvik is a clean-room implementation of Java for copyright reasons. The syntax is similar.



Android Media Player Architecture

Media Player App

Media Player App 
Framework

JAVA

Linux User Space
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Linux Kernel Space



Android Media Player Architecture

StageFright
Player

Media Player Service

Media Player App

Media Player App 
Framework

Media Player 
Service

…

JAVA

Linux User Space

� Google’s player of choice is the Stagefright
• multi-format  A/V player, newly developed for Android
• Simple fixed graph – selects demuxer and decoder 

based on file extension
� Alternatives exist

• Gstreamer based
• proprietary / legacy

GStreamer
Player
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Audio Optimization Option:
off-load audio processing to DSP

Audio Rendering 
( AudioFlinger)

Demuxer
(Parse container 

format)
Audio DecodingReader

(Read from Source)

GP-CPU 

Audio DSP

13© Synopsys 2011
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Android Graphics - Architecture

• 2D
– Canvas/Skia
– OpenVG

• 3D OpenGL

Application

Canvas

Skia

Render
Script
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• 3D
– OpenGL-ES 1.x
– OpenGL-ES 2

• Renderscript
– Expose native GPU/SMP to (portable) applications
– C99 ->LLVM intermediate bitcode -> machine code

OpenGLSkia

Surface



Android Graphics - Compositor
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2D blitter
OpenGL

GPU

SurfaceFlinger

Pixel
Flinger



• Graphics drawing/rendering
– Software/assembler optimization

• Skia, PixelFlinger
– Hardware acceleration

• GPU (OpenGL-ES 2)
• 2D accelerator (OpenVG compatible or other)
• Memory architecture, caching

Graphics Optimization Options
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• Memory architecture, caching
– Renderscript

• Surface Composition
– Scaling, colorspace conversion

• Custom instructions
• GPU 
• Dedicated hardware acceleration (bitblit)



What to optimize?

Market & value drivers

Agenda
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How to optimize?

Results & conclusion



Optimized Designware ARC Android

� Full port of the Android 
Froyo/Gingerbread 
release to the ARC 
processor architecture 
and build environment

� Including NDK and SDK 
to support Android 

ARC Sound
Audio DSP

(work in progress)
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to support Android 
application 
building/porting

� Google/OHA Compatibility 
Test Suite tested ARC Optimized 

bionic C library

ARC  Optimized 
Dalvik VM

ARC Optimized 
pixelflinger

ARC Linux kernel 
and Drivers

ARC Optimized V8 
JavaScript engine

(work in progress)



Differences between VM Implementations

Portable MTerp JIT

switch (opcode) {
case add: a = b + c;

break;
case sub: a = b – c;

break;
...

ld r0, [b]
ld r1, [c]
add r0, r0, r1
st r0, [a]
ld r0, [next_opcode]
asl r0, r0, 6
add r0, r13, r0

ld r0, [b]
ld r1, [c]
add r0, r0, r1
st r0, [a]

OR
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add r0, r13, r0
j [r0] add r20, r20, r21

ld r0, [next_opcode]
<pipeline stall>
ld.as r1, [jump_table, r0]
<pipeline stall>
j [r1]
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Reused from Google I/O presentation



Register- and Stack -based VMs

Example: a = b + c

Java Dalvik Dalvik for ARC

iload b
iload c
iadd
istore a

add-int a, b, c add-int a, b, c
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istore a

ld r0, [b]
push r0
ld r0, [c]
push r0
pop r0
pop r1
add r0, r0, r1
push r0
pop r0
st r0, [a]

ld r0, [b]
ld r1, [c]
add r0, r0, r1
st r0, [a]

add r20, r21, r22

Registers are only 
saved/restored when 

changing stack 
frames or when 

moving to interpreter



Audio Processing on DSP

Audio Rendering 
( AudioFlinger)

Demuxer
(Parse container 

format)
Audio DecodingReader

(Read from Source)

Control API Control API

GP-CPU 

Audio DSP
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� Audio decoding and Post-processing off-loaded to ARC Sound Processor
� Special host Audio Decoder implementation that takes care of off-loading

� with standard host decoder interfaces, so seamless integration
� Post-processing control through Renderer on host (special Renderer or Renderer 

plug-in component)

DSP
Audio Decoding

PostProcessing
(SonicFocus)

ARC Sound Processor



R
eader

Demuxer

R
enderer

Media Player App

Media Player App Framework

� MSF = Media Streaming Framework
ARC DSP optimized, lightweight 
streaming framework

� MQX = Real-time Operating system

� RPC/IPC = Remote Procedure call /
Inter Processor Communication

StageFright Player
(Control API)

Post 
Processing

(Control API)

Decoder

Stagefright
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Android Host Processor ARC Audio Processor(s) - AS2xx

MQX OS

RPC/
IPC

Android (Linux) OS

RPC/
IPC

Audio Data, Control

MSF Framework

Control API
Remote-d Control API

Processing
“ plug-in” De-

coder
Sonic
Focus

Decoder Wrapper

ARC Sound Remote-d MSF
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Android & Audio APIs

• Stagefright supports 2 types of interfaces
– OpenMax-IL : for re-use of OMX components
– Stagefright codec interface : for native Stagefright

codecs

• AudioFlinger uses dedicated interfaces
– standard implementation using “ALSA” exist
– developments ongoing (?) to support OpenSL-ES 

Stagefright

IPC
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– developments ongoing (?) to support OpenSL-ES 
Khronos standard (like OMX)

• SNPS API choice not yet made
– OMX-IL pro : open standard
– OMX-IL con: efficiency, complexity: standard by 

committee…
– Stagefright pro : efficient integration with Stagefright
– Stagefright con : not an open standard, no deep 

tunneling

codec

IPC

codec codec



• GStreamer Android Player
– see e.g. ELC-E 2010 

presentation

• “The goal of the project is to 
both allow hardware makers 
to standardize on GStreamer

Alternative: Gstreamer
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to standardize on GStreamer
accross their software 
platforms, but also to make 
the advanced functionality of 
GStreamer available on the 
Android platform, like video 
editing, DLNA Support and 
Video conferencing.”



• Gstreamer-MSF integration 
makes heterogeneous 
multi-core SW development 
transparent to user

• Instantiation of Gstreamer
element � instantiation of 

GStreamer DSP Off-loading with
“Deep Tunneling”

Host CPU

G G G

Host-ARC

G
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Dataflow graph instantiated on Audio Subsystem

element � instantiation of 
module on one of the ARC 
cores

• Creation of link �
local connection or 
core-crossing connection 
between modules

ARC core #0 ARC core #1

M M Msink src

FIFO

FIFO

src

driver

ARC-ARC
Streaming

Host-ARC
Streaming

Local
Streaming



Gstreamer Deep Tunneling
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ARC HW Extensions

extension 
instructions

ARC EIA (Extension Interface Automation):
• supports user defined custom instructions
• accelerates typical Dalvik (Java VM) and 

pixelflinger (2D GUI) instruction sequences

Prefetcher:
• Eliminates pipeline stalls in high latency 

memory environments
• L2$ not required in this case

ARC750D

I$ D$
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prefetch
unit

AXI bus

• L2$ not required in this case
• Configurable depending on application

VGA / HDMI / DSI
DDR memory (including frame buffer) display driver

I$ D$

CPU area, excluding memories

CPU + FPU

prefetcher

extra instructions



7 6 5 4 3 2 1 0

Leveraging the ARC EIA Capabilities
Example: Colour Space Conversion

ABGR8888

7 6 5 4 3 2 1 0

mask

7 6 5 4 3 2 1 0

7 6 5 4 3 2

shift right

mask

7 6 5 4 3

shift left7 6 5 4 3 2 1 0

7 6 5

8 operations are required for a 
conversion from ABGR8888 to 
RGB565.

This can be combined into one 
single EIA instruction.
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7 6 5 4 3 2 1 0 7 6 5 4 3

7 6 5 4 3 7 6 5 4 3 2 7 6 5 4 3 RGB565

7 6 5 4 3 2
mask

shift right

bitwise or

mask7 6 5 4 3

bitwise or

bitwise or

Instruction Operands

ld.ab r1, [r4, 0x4]

and r2, r1, 0xf8

asl r2, r2, 8

and r3, r1, 0xfc00

lsr r11, r3, 5

or r2, r2, r11

and r3, r1, 0xf80000

lsr r11, r3, 19

or r2, r2, r11

stw.ab r2, [r5, 0x2]

bitwise or

Instruction Operands

ld.ab r1, [r4, 0x4]

upk8 r2, r1, r6

stw.ab r2, [r5, 0x2]



What to optimize?

Market & value drivers

Agenda
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How to optimize?

Results & conclusion



Optimizing Dalvik VM
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Optimizing Dalvik VM
Dalvik JIT Optimization

Relative Performance Compared to Interpreter Perfor mance

x 4.9 … and going

~20%

32© Synopsys 2011

Core
Mark

Caffeine
Mark

Without
L2 cache 

1,9 4,9 /MHz

37 90 /mW

14 35 /MHz/mm 2

x 11.3 … and going

measurements are done on 50MHz FPGA
results are without performance gains from hardware extensions
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Optimizing Hardware
Custom Instructions & Prefetching
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Linux kernel + ARC HW optimizations
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• There are more markets for Android than high-end smartphone
• There are more optimizations possible than relying on Moore’s law 

for GHz multi-cores

• Optimize performance / mW & performance / area
• Sweetspot : “heterogeneous, HW accelerated multi-core”

Conclusions
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• Sweetspot : “heterogeneous, HW accelerated multi-core”
– Mix of CPU, DSP, and dedicated HW
– Highly optimized platform infrastructure SW hides heterogeneous complexities

• ‘Simple’ ARC processor with SW optimized Dalvik VM performs 
equal or better as others, thanks to careful SW optimizations, and 
the use of simple HW acceleration 

– Custom instructions tailored for specific tasks
– Prefetcher iso. general purpose 2nd level cache
– DSP more efficient in audio processing than CPU
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Fast Forward to Predictable Success


