
Deploying LTTng on Exotic Embedded Architectures

Mathieu Desnoyers
École Polytechnique de Montréal
mathieu.desnoyers@polymtl.ca

Michel R. Dagenais
École Polytechnique de Montréal
michel.dagenais@polymtl.ca

Abstract

This paper presents the considerations that
comes into play when porting the LTTng tracer
to a new architecture. Given the aleady portable
design of the tracer, very targeted additions can
enable tracing on a great variety of architec-
tures. The main challenge is to understand
the architecture time-base in enough depth to
integrate it to LTTng by creating a lock-less
fast and fine-grained trace clock. The ARM
OMAP3 LTTng port will be used as an exam-
ple.

1 Introduction

Gathering an execution trace at the operating
system level has been an important part of the
embedded system development process, as il-
lustrates the case of the Mars Pathfinder[5] pri-
ority inversion, solved by gathering an execu-
tion trace.

In the Linux environment, such system-wide
facility is just becoming accepted in the main-
line kernel, but with the kernel developer audi-
ence as main target. The portability issues and
lack of user-oriented tools to manipulate the
information may be indications of two points
where the current state of Linux kernel tracing
is not up to the tools embedded systems devel-
opers are used to. For instance, WindRiver is

shipping LTTng with their Linux distribution to
provide similar features as in VxWorks. Mon-
tavista also integrates LTTng to their Carrier
Grade Linux distribution.

LTTng currently supports the following archi-
tectures :

• X86 32/64

• MIPS

• PowerPC 32/64

• ARM1

• S390 2

• Sparc 32/643

• SH644

This paper presents the key abstractions re-
quired to port LTTng to a new architecture,
mainly describing what considerations must be
taken into account when designing a trace clock
time source suitable for tracing, meeting the
platform-specific constraints.

1Limited time-stamping precision
2Partial instrumentation
3Partial instrumentation
4Partial instrumentation

1



2 State of the Art

Looking at some of the most widely used open-
source tracing alternatives, we can see that
Dtrace[3], Ftrace (as of Linux kernel 2.6.29)
and SystemTAP [4] are three of the solutions
that are the closest to LTTng.

Dtrace does not require the same level of porta-
bility, given Solaris only targets Intel x86 and
Sparc architectures. Therefore, this tracer as-
sumes access to a time-stamp counter register.

Ftrace uses the scheduler time-source due to its
low performance impact. However, on 32-bits
architecture, this time-source is using 64-bits
variables without using the proper sequence
lock synchronization primitives. While having
a scheduler doing a wrong decision once in a
while is acceptable, having incorrect timing in-
formation in a trace can be very confusing.

SystemTAP is using the time source primitives
provided by the Linux kernel. Those are tak-
ing a sequence lock to protect non-atomic data
structure accesses. This implies that instrumen-
tation coverage cannot include non-maskable
interrupt handlers NMIs, because a NMI tak-
ing a sequence read lock nested over a sequence
write lock would deadlock.

3 Porting LTTng to a new architec-
ture

In the case of LTTng, even though it uses very
efficient binary buffers to extract the data out of
kernel-space, all its design deals with type size
and endianness issues by making sure the infor-
mation written in the trace is self-described by
a meta-data information channel.

We will now see what work still has to be done
when porting LTTng to a new architecture.

3.1 Instrumentation

First, the instrumentation must be expanded to
include some architecture-specific events.

System call instrumentation has to be added at
system call entry and exit syscall_trace. LTTng
already adds a thread flag to the low-level ker-
nel assembly to call into the standard system
call tracing callback of each architecture sup-
ported by the Linux kernel.

Given that LTTng instrumentation covers
architecture-agnostic sites for most of its event
sources, only few supplementary architecture-
specific tracepoints are required :

• kernel_thread_create

• syscall_trace

• ipc_call5

• trap_entry, trap_exit

• page_fault_entry, page_fault_exit

In some cases (x86 for instance), a few interrupt
handlers do not use the architecture-agnostic
code to connect to their interrupt vector. In
those cases, new irq_entry and irq_exit events
are needed in the architecture code.

3.2 Time Source

3.2.1 Architectural Variety

The time sources available on different archi-
tectures vary greatly. On x86-based architec-
tures, the tsc register[2][6] can usually be
used as a fast and fine-grained time source. The

5IPC : Inter-Process Communication

2



PowerPC has the tb register which allows all
cores to read a common time source through a
register read.

However, embedded architectures like ARM
and MIPS usually either depend on an external
memory-mapped I/O timer to provide a time-
source, or on a 32-bits only register read.

One of the main problems encountered with
tracing clock source design is the different lim-
itations founds in various architectures. For in-
stance, MIPS and ARM only provide 32-bits
clock sources, either through a local register or
through external memory mapped I/O. These
counters overflow too frequently to be usable
per se without being extended to 64-bits.

Some architectures provide fast register-based
time counters that are not synchronized across
cores. In those cases, more evolved algorithms
must be deployed to make the time base appear
reasonably synchronized across cores.

Yet another problem faced is that some archi-
tectures (e.g. ARM OMAP3) stops the CPU
time base register counter in sleep modes. The
same appears on various AMD and Intel pro-
cessors which stop the tsc register during idle.

3.2.2 Characteristics Required

The main concern, when porting LTTng to a
different architecture, is to create a trace clock
suited to the architecture restrictions which of-
fers the following characteristics.

LTTng relies on a 64-bits monotonic time base
available system-wide. 32-bits would be too
few, given it would overflow every 4.29 sec-
onds at 1 GHz. A channel only recording rare
events would not allow to detect longer time
deltas accurately.

The tracer also needs the timer presented to the
tracer to appear as being reasonably synchro-
nized across cores. At least, a maximum bound
on the time precision error should be ensured.

The time-base needs to be fast, given it has to
be read for each event record. This can eas-
ily drag system’s resources. It also needs to be
scalable if the architecture aims at supporting
SMP. Any data structure used to keep track of
time-base state should be designed so it can be
read from any context. Therefore, locking must
be chosen with great care.

3.2.3 Design Considerations

Given those requirements, some design choices
become clear. First, whenever a cycles counter
register is available on the architecture, it
should be used as a per-event time source.

External memory-mapped I/O timers should
only be used as a time source when strictly re-
quired, because they are typically much slower
than the cycle counter register, and do not scale
well. The HPET6 has been measured to add re-
spectively a 10%, 11% and 19% performance
impact to LTTng on 1, 2 and 8 cores, while the
performance impact is constant with a scalable
time-source like the cycle counter. However,
those external timer counters can be useful to
resynchronize the cycle counter when coming
back from sleep or idle, if these events do not
occur too frequently.

Regarding locking, the sequence lock (seqlock)
should be avoided, because it would cause
deadlocks if used in a NMI handler. It would
also deadlock if instrumentation is added to a
code path protected by the write sequence lock.

The best solution is therefore to use RCU-like
algorithms to manage data updates. It lets any

6HPET : High-Precision Event Timer[1]

3



reader context successfully read a valid copy of
the data.

Extension of 32-bits to 64-bits timestamps is
provided by the LTTng trace-clock-32-to-64
module, which lets any kernel context read the
64-bits time-base atomically using a RCU-like
algorithm.

4 ARM OMAP3 Example

Those general guidelines being drawn, this sec-
tion shows how they can be applied to a real-life
scenario. This involves porting LTTng to the
ARM OMAP3 architecture.

The ARM OMAP3 has a 31-bits (usable) cy-
cle counter register called ccnt. A hardware
bug prevents using the 32nd bit because of a
race between the CP14 and CP15 coprocessor
register accesses and the ccnt register overflow.
The solution is to periodically clear the high or-
der bit to make sure overflow never happens.
The trace-clock-32-to-64 code is actually flexi-
ble enough to have the number of lower “hard-
ware” bits to expect specified at compile-time.
Therefore, by overriding the number of hard-
ware bits to 31, it supports the buggy cycle
counter register without problem.

Sleep support is provided by allowing to resyn-
chronize the ccnt register and the trace-clock-
32-to-64 data structures by reading the 32k
timer upon return from sleep. This timer has the
particularity of not stopping even in deep sleep
mode. Given it runs at a lower frequency, the
overall precision of timestamps will be lower,
but it should be enough for general purpose
tracing needs (30 µs granularity). This should
therefore be taken into account in the time-base
imprecision when analysing the traces taken
from such architecture, especially if it involves
a SMP system.

5 Variable Frequency Support Dis-
cussion

Architectures like the ARM OMAP3 and some
AMD and Intel processors base the time-stamp
counter register on the CPU’s frequency, which
may vary depending on various conditions. The
kernel can ask the frequency to be continu-
ously adapted to match the workload, tempera-
ture sensors can slow down the CPU frequency
to make sure it does not overheat, etc. This
frequency modulation is usually done per-core,
which means that the cycle counter register will
be non-synchronized across cores. Newer Intel
and AMD architectures fix this issue by letting
the tsc register run at a lower, synchronized,
frequency.

However, those architectures with non-
synchronized cycle counter register still have
to be supported. If we are lucky, the OS is
informed of the frequency change and calls
a notifier chain. In the opposite case, e.g.
some AMD CPUs, the speed is throttled by the
Southbridge without notifying the operating
system by an interrupt.

Even if we are lucky, the delay between the ac-
tual frequency change and the delivery of the
frequency change notification would generate
an imprecision between the real reference time
and the CPU time. For instance, a CPU go-
ing from 1 GHz to 2 GHz, assuming approxi-
mately 5000 cycles between interrupt reception
and data structure updates, will count 5000 cy-
cles which should be considered as 2500 cy-
cles in reference time. Therefore, 2500 cycles
at 1 GHz bring a 2.5µs offset. Given that the
delay between interrupt and update is highly
variable due to cache effect, higher priority in-
terrupts and interrupt disabled regions, the error
will accumulate.

Even worse, interrupt disabled sections in the
Linux kernel may last for as long as 15µs.

4



Given the cumulative nature of this error, it
quickly becomes problematic for SMP syn-
chronization.

Another alternative would be to use a HPET-
like time-source, but it involves a slow
memory-mapped I/O access and it does not
scale when the number of CPUs increase. Oth-
erwise, using a compare-and-swap instruction
to make sure the time-base never goes back-
ward could help, but the cache-line bouncing
involved makes it completely non-scalable.

My proposal, which might have some value if
proven workable, would be to use a periodical
memory-mapped external clock source resyn-
chronization. This would make sure the error
does not accumulate. When a frequency change
is about to be requested by the operating sys-
tem, the time-stamp should be saved, all this
with interrupts disabled. This would make sure
the time-stamp value matches as closely as pos-
sible the moment at which the frequency has
been changed. The CPU frequency change no-
tifier should then be used to deal with cases
where the OS is not requesting the frequency
change. If this happens rarely enough, it would
be valuable to perform an external clock-source
based resynchronization at that point.

6 Conclusion

Porting LTTng to new architectures, as this pa-
per detailed, involves mainly supporting the
architecture-specific hardware time sources,
either cycle counter registers or external
memory-mapped I/O clock sources. The mix
of constraints being : speed, scalability, re-
entrancy and fine granularity in a SMP envi-
ronment makes this problem relatively hard to
tackle. LTTng includes helpers such as trace-
clock-32-to-64 to make the port task easier. In
the event that an architecture needs more logic

to deal with non-synchronized cycle counters
or with sleep modes, great care must be taken
to use data structures that will let the time-base
be read in any execution context.

Most of LTTng’s instrumentation is already
architecture-agnostic, so only a small subset of
instrumentation needs to be added to the ar-
chitecture source tree. As far as portability of
data structures used in LTTng, all the tracer is
portable between various platforms and usable
between different endianness.

References

[1] High precision event timers (hpet)
specification. http:
//www.intel.com/technology/
architecture/hpetspec.htm,
October 2004.

[2] Intel R© pentium R© m processor on 90 nm
process with 2-mb l2 cache specification
update and intel R© processor a100 and
a110 on 90 nm process with 512-kb l2
cache.
http://www.intel.com/design/
mobile/specupdt/302209.htm,
November 2007.

[3] Bryan M. Cantrill, Michael W. Shapiro,
and Adam H. Leventhal. Dynamic
instrumentation of production systems. In
USENIX ’04, 2004.

[4] Vara Prasad, William Cohen, Frank Ch.
Eigler, Martin Hunt, Jim Keniston, and
Brad Chen. Locating system problems
using dynamic instrumentation. In OLS
(Ottawa Linux Symposium) 2005, 2005.

[5] G. E. Reeves. What really happened on
mars? (technical report). http:
//hdl.handle.net/2014/19020,
February 1998.

5

http://www.intel.com/technology/architecture/hpetspec.htm
http://www.intel.com/technology/architecture/hpetspec.htm
http://www.intel.com/technology/architecture/hpetspec.htm
http://www.intel.com/design/mobile/specupdt/302209.htm
http://www.intel.com/design/mobile/specupdt/302209.htm
http://hdl.handle.net/2014/19020
http://hdl.handle.net/2014/19020


[6] AMD Fellow Rich Brunner. Tsc and
power management events on amd
processors. http://lkml.org/
lkml/2005/11/4/173, November
2005.

6

http://lkml.org/lkml/2005/11/4/173
http://lkml.org/lkml/2005/11/4/173

	Introduction
	State of the Art
	Porting LTTng to a new architecture
	Instrumentation
	Time Source
	Architectural Variety
	Characteristics Required
	Design Considerations


	ARM OMAP3 Example
	Variable Frequency Support Discussion
	Conclusion

