
What can Vulkan* do for you?
Jason Ekstrand - Embedded Linux Conference - February 22, 2017

What is the Vulkan* API?
Vulkan is a new 3-D rendering and compute api from Khronos, the
same cross-industry group that maintains OpenGL

● Redesigned from the ground-up; It is not OpenGL++
● Designed for modern GPUs and software
● Designed for both desktop and embedded use-cases
● Will run on currently shipping (GL ES 3.1 class) hardware

*Other names and brands may be claimed as the property of others.

Why do we need a new 3-D API?
● OpenGL* 1.0 was released by SGI in January of 1992

○ Based on the proprietary IRIS GL API
○ Heavily state-machine based
○ No real window system story

● OpenGL ES 1.0 was released in July of 2003
○ Based on OpenGL 1.4 but designed for embedded applications
○ Brought a unified EGL window system layer

● OpenGL ES 2.0 was released in March of 2007
○ Fully programmable pipeline (roughly equivalent to GL 3.0)
○ Not compatible with OpenGL ES 1.0/1.1

● OpenGL ES 3.2 was released in August of 2015 *Other names and brands may be
claimed as the property of others.

Why do we need a new 3-D API?
OpenGL* has done amazingly well over the last 25 years!

Not everything in OpenGL has stood the test of time:
● The OpenGL is API is a state machine
● OpenGL state is tied to a single on-screen context
● OpenGL hides everything the GPU is doing

This all made sense in 1992!

*Other names and brands may be claimed as the property of others.

Why do we need a new 3-D API?
Much has changed since 1992:
● Multithreading is now common-place

○ A state machine based on a singleton context doesn’t thread well
● Off-screen rendering is a thing

○ Why do I need to talk to X11 to get a context?
● GPU hardware is much more standardized

○ You don’t need to hide everything
○ App developers don’t want you to hide everything

OpenGL* has adapted as well as it can
*Other names and brands may be
claimed as the property of others.

Why do we need a new 3-D API?
Vulkan* takes a different approach:
● Vulkan is an object-based API with no global state

○ All state concepts are localized to a command buffer
● WSI is an extension of Vulkan, not the other way round.
● Vulkan far more explicit about what the GPU is doing

○ Texture formats, memory management, and syncing are client-controlled
○ Enough is hidden to maintain cross-platform compatibility

● Vulkan drivers do no error checking!

*Other names and brands may be claimed as the property of others.

What makes Vulkan* better?

We’re going to focus on a four things:
● Pipelines
● Render passes
● Multithreading and synchronization
● Error handling (or the lack thereof)

*Other names and brands may be claimed as the property of others.

Pipelines
#version 450

layout(location=0) in vec4 a_vertex;

layout(location=1) in vec2 a_tex;

uniform mat4 u_matrix;

layout(location=0) out vec2 v_tex;

void main()

{

 v_tex = a_tex;

 gl_Position = u_matrix * a_vertex;

}

Where do these come from?

Where do these go?

What happens between stages?

Pipelines
All of this is implementation-dependent!

Frequently, “fixed function” stages are implemented in shaders:
● Vertex fetch
● Color blending
● Alpha test
● And more…

All of the above are controlled by state not shader code.

Pipelines
So you’re doing some rendering...

You cou call glDrawArrays and the driver:
1. Examines the currently bound shaders
2. Examines various bits of context state
3. Decides it needs to spend 100ms compiling a new shader

You just missed vblank and your app visibly stutters

Pipelines
Vulkan’s* solution: The VkPipeline object:
● A monolithic object describing the entire pipeline
● Contains shaders for all stages (vertex, fragment, etc.)
● Contains linkage information

○ Vertex input layout
○ Render target formats
○ Resource descriptor layouts (textures, UBOs, etc.)

● Contains most of the pipeline state
○ Color blending
○ Depth and stencil tests

*Other names and brands may be claimed as the property of others.

Pipelines
Isn’t this far less flexible than the state model?
● More data must be provided up-front
● Many pipelines must be created per-shader because of state

Yes, but it comes with several advantages:
● A pipeline contains everything needed to compile shaders
● Common data can be shared via a VkPipelineCache
● A VkPipelineCache can be easily serialized and written to disk

Pipelines

Pipelines bring predictability to the API:
● All shader compilation happens in vkCreateGraphicsPipelines
● Drivers have less work to do at draw time
● Using VkPipelineCache serialization can almost completely

remove shader compilation from application start-up time

Render passes

Render passes are a concept fairly unique to Vulkan*:
● Structures rendering into passes and subpasses

○ Each subpass has its own render targets
○ Render target information is declared up-front
○ Dependencies between subpasses are explicit

● Forces the application to render “nicely”
● Provides extra information to the implementation

*Other names and brands may be claimed as the property of others.

Render passes

glBindFramebuffer();

glDrawArrays();

glDrawArrays();

glBindFramebuffer();

glDrawArrays();

glTexSubImage2D();

glDrawArrays();

vkCmdBeginRenderPass

vkCmdEndRenderPass

vkCmdNextSubpass

vkCmdDraw

vkCmdDraw

vkCmdDraw

vkCmdDraw

vkCmdCopyBufferToImage

Render passes
Why require this structure?
● Changing framebuffers can be expensive
● Copy operations (texture uploads etc.) may implicitly require

changing framebuffers
● Improves parallelism by removing pixel dependencies

○ An entire render pass can be run one pixel at a time
○ Tiling architectures split rendering into small chunks

● Reduces driver “guesswork”

Multithreading and synchronization

Vulkan* is object-based, not state-based:
● Most objects are immutable
● The only stateful object is the command buffer
● Command buffers can be built in parallel
● The only synchronization point is vkQueueSubmit
● Command buffers may even execute in parallel

*Other names and brands may be claimed as the property of others.

Multithreading and synchronization

Synchronization is handled by the client:
● Client must synchronize around vkQueueSubmit
● Synchronization between GPU and GPU or CPU and GPU is done

using fences and semaphores
● Client is responsible for ensuring GPU resources remain alive so

long as the GPU is using them.

Error handling
Many APIs do “lazy” error handling

OpenGL* is a state machine
● Non-fatal errors must leave the context in a known state
● Non-fatal OpenGL errors do not change state
● Most OpenGL API misuse is non-fatal
● OpenGL drivers do a lot of up-front error checking
● For well-behaved apps, this is all wasted CPU cycles

*Other names and brands may be claimed as the property of others.

Error handling
Vulkan* drivers don’t handle errors:
● Any API misuse may result in a crash or worse
● Invalid synchronization may result in GPU hangs

A set of API validation layers is provided by Khronos:
● Perform an extensive set of API valid usage checks
● Provides costly “deep validation” checks

Validation can be used during development and removed for release
*Other names and brands may be claimed as the property of others.

What makes Vulkan* better?

Vulkan is designed to be light-weight and low-overhead:
● Pipelines give more predictable performance and faster load times
● Render passes provide structure and avoids driver guess-work
● Vulkan natively multithreads
● No CPU cycles are wasted on pointless run-time error checks

Don’t waste valuable CPU cycles on driver overhead!

*Other names and brands may be claimed as the property of others.

Status of Vulkan* and open-source
Vulkan was released on Feb. 16, 2016
● Four day-one conformant implementations:

○ Imagination
○ Intel
○ NVIDIA
○ Qualcom

● Intel had a conformant open-source Linux* driver on day 1!
● Tools, tests, and validation layers released open-source
● Two day-one AAA game titles: Dota 2 and The Talos Principle

*Other names and brands may be claimed as the property of others.

Status of Vulkan* and open-source
Linux Source Git history Community

Vulkan spec ✔ ✔ ✘ ✘

Intel Linux driver ✔ ✔ ✔ ✔

Other drivers ✔ ✘ ✘ ✘

Vulkan Loader ✔ ✔ ✔ ✔

SPIR-V Tools ✔ ✔ ✔ ✔

Vulkan conformance tests ✔ ✔ ✔ 75%

Vulkan validation layers ✔ ✔ ✔ ✔

*Other names and brands may be claimed as the property of others.

Status of Vulkan* and open-source
Much has happened in the last year:
● Seven conformant implementations:

○ AMD, ARM, Imagination, Intel, NVIDIA, Qualcomm, VeriSilicon
● Intel still has the only conformant open-source implementation
● Validation layers and other tools are much better
● Doom has joined the list of AAA titles
● Many game engines are porting to Vulkan

○ CryEngine, id Tech 4, Serious 4, Source 2, Unity 5, Unreal 4, Xenko, ...

*Other names and brands may be claimed as the property of others.

Status of Vulkan* and open-source
The open-source community has embraced Vulkan:
● Many open-source Vulkan demos
● Community-developed, open-source radeon driver
● Open-source games/engines

○ vkQuake, Intrinsic, Xenko, ...
● Open-source N64 and PS1 emulators using Vulkan compute
● Open-source D3D9 over Vulkan implementation
● Open-source libraries and tools

○ Renderdoc, VKTS, ...
● ...

*Other names and brands may be claimed as the property of others.

