e

¥ 01018
101010
010;

What can Vulkan™ do for you?

Jason Ekstrand - Embedded Linux Conference - February 22, 2017




What is the Vulkan* API? intel)

Vulkan is a new 3-D rendering and compute api from Khronos, the
same cross-industry group that maintains OpenGL

Redesigned from the ground-up; It is not OpenGL++
Designed for modern GPUs and software

Designed for both desktop and embedded use-cases

Will run on currently shipping (GL ES 3.1 class) hardware

*Other names and brands may be claimed as the property of others.




Why do we need a new 3-D API? inte)

e OpenGL* 1.0 was released by SGI in January of 1992

o Based on the proprietary IRIS GL API
o Heavily state-machine based
o No real window system story

e OpenGL ES 1.0 was released in July of 2003

o Based on OpenGL 1.4 but designed for embedded applications
o Brought a unified EGL window system layer

e OpenGL ES 2.0 was released in March of 2007

o Fully programmable pipeline (roughly equivalent to GL 3.0)
o Not compatible with OpenGL ES 1.0/1.1

e OpenGL ES 3.2 was released in August of 2015 “Other names and brands may be

claimed as the property of others.




Why do we need a new 3-D API?

OpenGL* has done amazingly well over the last 25 years!

Not everything in OpenGL has stood the test of time:
e The OpenGL is APl is a state machine

e OpenGL state is tied to a single on-screen context
e OpenGL hides everything the GPU is doing

This all made sense in 1992!

*Other names and brands may be claimed as the property of others.




Why do we need a new 3-D API? inte)

Much has changed since 1992:
e Multithreading is now common-place
o A state machine based on a singleton context doesn’t thread well

e Off-screen rendering is a thing
o Why do | need to talk to X11 to get a context?

e GPU hardware is much more standardized

o You don’t need to hide everything
o App developers don’t want you to hide everything

OpenGL* has adapted as well as it can

*Other names and brands may be
claimed as the property of others.




Why do we need a new 3-D API?

Vulkan* takes a different approach:
e Vulkan is an object-based API with no global state
o All state concepts are localized to a command buffer
e WSl is an extension of Vulkan, not the other way round.

e Vulkan far more explicit about what the GPU is doing

o Texture formats, memory management, and syncing are client-controlled
o Enough is hidden to maintain cross-platform compatibility

e Vulkan drivers do no error checking!

*Other names and brands may be claimed as the property of others.




What makes Vulkan™ better?

We're going to focus on a four things:
e Pipelines
e Render passes
e Multithreading and synchronization
e Error handling (or the lack thereof)

*Other names and brands may be claimed as the property of others.




Draw

¥

Input Assembler

Vertex Shader

Tessellation Assembler
Tessellation Control Shader
Tessellation Primitive Generator

Tessellation Evaluation Shader

.

Geometry Assembler

Geometry Shader

v

Primitive Assembler

Rasterization

v

Pre-Fragment Operations
Fragment Assembler
Fragment Shader
Post-Fragment Operations

Color/ Blending Operations

<> storagelmage <>

A

<— Push Constants —

<> (—- Sampled Image -—)

H Depth/ Stencil Attachment

(—)} Color Attachment

\

Dispatch

¥

Compute Assembler

Compute Shader

Legend

Fixed Function Stage

Programmable Stage




Pipelines inte)

#tversion 450

Where do these come from? layout(location=0) in vec4 a_vertex;
layout(location=1) in vec2 a_tex;
uniform mat4 u_matrix;

—pr layout(location=0) out vec2 v_tex;

Where do these go?

void main()

{
What happens between stages? v_tex = a_tex;

A

gl Position = u_matrix * a_vertex;

¥




Pipelines
All of this is implementation-dependent!

Frequently, “fixed function” stages are implemented in shaders:
e \ertex fetch

e Color blending

e Alpha test

e And more...

All of the above are controlled by state not shader code.




Pipelines
So you’re doing some rendering...

You cou call glbrawArrays and the driver:

1. Examines the currently bound shaders

2. Examines various bits of context state

3. Decides it needs to spend 100ms compiling a new shader

You just missed vblank and your app visibly stutters




Pipelines

Vulkan’s* solution: The VkPipeline object:
e A monolithic object describing the entire pipeline
e Contains shaders for all stages (vertex, fragment, etc.)

e Contains linkage information

o Vertex input layout
o Render target formats
o Resource descriptor layouts (textures, UBOs, etc.)

e Contains most of the pipeline state

o Color blending
o Depth and stencil tests

*Other names and brands may be claimed as the property of others.




Pipelines

Isn’t this far less flexible than the state model?
e More data must be provided up-front
e Many pipelines must be created per-shader because of state

Yes, but it comes with several advantages:
e A pipeline contains everything needed to compile shaders
e Common data can be shared via a VkPipelineCache
e A VkPipelineCache can be easily serialized and written to disk




Pipelines (inteD

Pipelines bring predictability to the API:

e All shader compilation happens in vkCreateGraphicsPipelines
e Drivers have less work to do at draw time

e Using VkPipelineCache serialization can almost completely
remove shader compilation from application start-up time




Render passes

Render passes are a concept fairly unique to Vulkan™:

e Structures rendering into passes and subpasses

o Each subpass has its own render targets
o Render target information is declared up-front
o Dependencies between subpasses are explicit

e Forces the application to render “nicely”
e Provides extra information to the implementation

*Other names and brands may be claimed as the property of others.




Render passes

glBindFramebuffer();
glDrawArrays();
glDrawArrays();
glBindFramebuffer(); — y
glDrawArrays(); — — vkcmdNextSubpass
ngexSubImageZD();//'
glDrawArrays();




Render passes

Why require this structure?

Changing framebuffers can be expensive
Copy operations (texture uploads etc.) may implicitly require
changing framebuffers

Improves parallelism by removing pixel dependencies

o An entire render pass can be run one pixel at a time
o Tiling architectures split rendering into small chunks

Reduces driver “guesswork”




Multithreading and synchronization (inteD

Vulkan® is object-based, not state-based:

Most objects are immutable

The only stateful object is the command buffer
Command buffers can be built in parallel

The only synchronization point is vkQueueSubmit
Command buffers may even execute in parallel

*Other names and brands may be claimed as the property of others.




Multithreading and synchronization (inteD

Synchronization is handled by the client:

e Client must synchronize around vkQueueSubmit

e Synchronization between GPU and GPU or CPU and GPU is done
using fences and semaphores

e Clientis responsible for ensuring GPU resources remain alive so
long as the GPU is using them.




Error handling

Many APls do “lazy” error handling

OpenGL* is a state machine

e Non-fatal errors must leave the context in a known state
e Non-fatal OpenGL errors do not change state

e Most OpenGL API misuse is non-fatal

e OpenGL drivers do a lot of up-front error checking

e For well-behaved apps, this is all wasted CPU cycles

*Other names and brands may be claimed as the property of others.




Error handling

Vulkan* drivers don’t handle errors:
e Any API misuse may result in a crash or worse
e |nvalid synchronization may result in GPU hangs

A set of API validation layers is provided by Khronos:
e Perform an extensive set of API valid usage checks
e Provides costly “deep validation” checks

Validation can be used during development and removed for release

*Other names and brands may be claimed as the property of others.




What makes Vulkan™ better?

Vulkan is designed to be light-weight and low-overhead:
e Pipelines give more predictable performance and faster load times
e Render passes provide structure and avoids driver guess-work
e \ulkan natively multithreads
e No CPU cycles are wasted on pointless run-time error checks

Don’t waste valuable CPU cycles on driver overhead!

*Other names and brands may be claimed as the property of others.




Status of Vulkan™ and open-source (nteD

Vulkan was released on Feb. 16, 2016

e Four day-one conformant implementations:
o Imagination
o Intel
o NVIDIA
o Qualcom

e Intel had a conformant open-source Linux* driver on day 1!
e Tools, tests, and validation layers released open-source
e Two day-one AAA game titles: Dota 2 and The Talos Principle

*Other names and brands may be claimed as the property of others.




Status of Vulkan™ and open-source (nteD

Vulkan spec 4 4 b 4 4
Intel Linux driver v 4 v v
Other drivers v 4 X X
Vulkan Loader v v v v
SPIR-V Tools v v v/ v
Vulkan conformance tests v v v 75%
Vulkan validation layers v v v v




Status of Vulkan™ and open-source (nteD

Much has happened in the last year:

e Seven conformant implementations:
o AMD, ARM, Imagination, Intel, NVIDIA, Qualcomm, VeriSilicon

Intel still has the only conformant open-source implementation
Validation layers and other tools are much better
Doom has joined the list of AAA titles

Many game engines are porting to Vulkan
o CryEngine, id Tech 4, Serious 4, Source 2, Unity 5, Unreal 4, Xenko, ...

*Other names and brands may be claimed as the property of others.




Status of Vulkan™ and open-source (nteD

The open-source community has embraced Vulkan:
e Many open-source Vulkan demos
e Community-developed, open-source radeon driver

e Open-source games/engines
o vkQuake, Intrinsic, Xenko, ...

e Open-source N64 and PS1 emulators using Vulkan compute
e Open-source D3D9 over Vulkan implementation

e Open-source libraries and tools
o Renderdoc, VKTS, ...

*Other names and brands may be claimed as the property of others.




o
le Ly
7000000






