
Filesystem considerations for
embedded devices

ELC2015

03/25/15

Tristan Lelong

Senior embedded software engineer

Filesystem considerations

ABSTRACT

The goal of this presentation is to answer a question asked

by several customers: which filesystem should you use within

your embedded design’s eMMC/SDCard?

These storage devices use a standard block interface,

compatible with traditional filesystems, but constraints are not

those of desktop PC environments.

EXT2/3/4, BTRFS, F2FS are the first of many solutions which

come to mind, but how do they all compare? Typical queries

include performance, longevity, tools availability, support, and

power loss robustness.

This presentation will not dive into implementation details but

will instead summarize provided answers with the help of

various figures and meaningful test results.

2

TABLE OF CONTENTS

1. Introduction

2. Block devices

3. Available filesystems

4. Performances

5. Tools

6. Reliability

7. Conclusion

Filesystem considerations

ABOUT THE AUTHOR

• Tristan Lelong

• Embedded software engineer @ Adeneo Embedded

• French, living in the Pacific northwest

• Embedded software, free software, and Linux kernel

enthusiast.

4

Introduction

Filesystem considerations Introduction

INTRODUCTION

More and more embedded designs rely on smart memory chips

rather than bare NAND or NOR.

This presentation will start by describing:

• Some context to help understand the differences between

NAND and MMC

• Some typical requirements found in embedded devices

designs

• Potential filesystems to use on MMC devices

6

Filesystem considerations Introduction

INTRODUCTION

Focus will then move to block filesystems. How they are

supported, what feature do they advertise.

To help understand how they compare, we will present some

benchmarks and comparisons regarding:

• Tools

• Reliability

• Performances

7

Block devices

Filesystem considerations Block devices

MMC, EMMC, SD CARD

Vocabulary:

• MMC: MultiMediaCard is a memory card unveiled in 1997

by SanDisk and Siemens based on NAND flash memory.

• eMMC: embedded MMC is just a regular MMC in a BGA

package, that is solded to the platform.

• SD Card: SecureDigital Card was introduced in 1999

based on MMC but adding extra features such as security.

MMC

This presentation will use term MMC to refer to these 3.

9

Filesystem considerations Block devices

INSIDE MMC

The MMC is composed by 3 elements:

• MMC interface: handle communication with host

• FTL (Flash translation layer):

• Storage area: array of SLC/MLC/TLC NAND chips

10

Filesystem considerations Block devices

FTL

The FTL is a small controller running a firmware. Its main

purpose is to transform logical sector addressing into NAND

addressing. It also handles:

• Wear-leveling

• Bad block management

• Garbage collection.

FTL firmware

FTL firmware is usually a black box, and doesn’t allow any kind

of control or tuning.

11

Filesystem considerations Block devices

JEDEC SPECIFICATIONS

MMC specifications are handled by the JEDEC organisation:

http://www.jedec.org

Current JEDEC version is v5.1 (JESD84-B51.pdf published in

Febuary 2015)

12

http://www.jedec.org

Filesystem considerations Block devices

BLOCK VERSUS MEMORY TECHNOLOGY DEVICES

Block and memory technology devices are fundamentaly

different.

• Block devices: sector addressing. Offers read / write

operations

• Memory technology devices: sector / subpage / page

addressing. Offers read / write / erase operations

Erase operation

On NAND or NOR devices, once a bit is flipped to 0, only an

erase operation can flip it back to 1.

13

Filesystem considerations Block devices

BLOCK VERSUS MEMORY TECHNOLOGY DEVICES

MTD also has some other specificities:

• Short lifetime per cell (due to max number of erase cycle),

requires to spread operations on the entire array.

• Bad block table

• ECC

• Spare area (OOB)

Warning

All this is usually handled by the filesystem itself. This requires

new specific filesystems for MTD.

14

Filesystem considerations Block devices

STATISTICS

Source: Micron marketing via jedec.org

15

Filesystem considerations Block devices

PRICE AND CAPACITY

eMMC SD card NAND
0

10

20

30

P
ri
c
e
(U
S
D
)

4GB 8GB 16GB 32GB 64GB

Source: chinaflashmarket.com

16

Filesystem considerations Block devices

PROS AND CONS

Pros of MMC:

• Standard filesystems are compatible

• No extra operation to do (wear leveling, bad blocks, erase,

garbage collection)

• Consistent in bootloader and kernel

Cons of MMC:

• Less control (no tuning possible)

• Need to trust the manufacturer

• Usually more expensive

17

Filesystem considerations Block devices

DESKTOP VERSUS EMBEDDED SYSTEMS

MMC uses the same filesystems as the one found on desktop

or servers.

Embedded devices have different requirements, therefore

selection critria are not those of usual PC.

• Bandwidth:

I Important for boot time for instance

I Not the same figures (x5 to x100)

• Reliability: need to be robust to power loss and auto fix

error in case of corruptions

• Efficiency: the more efficient the usage, the less power it

requires

• Cpu usage: embedded processors are often less powerful

than traditional desktop
18

Available filesystems

Filesystem considerations Available filesystems

FILESYSTEMS IN LINUX

20

Filesystem considerations Available filesystems

WHY NOT ZFS

• Provides strong data integrity

• Supports huge filesystems

• Not intended for embedded systems (requires RAM)

• License not compatible with Linux

21

Filesystem considerations Available filesystems

WHY NOT REISERFS

• Reiser3 version is not supported anymore

• Reiser4 is not mainline Linux

22

Filesystem considerations Available filesystems

WHY NOT RELIANCE NITRO

Datalight provides a custom filesystem for MMC

• Reliance Nitro: Filesystem

• FlashFXe: optimization layer for accesses on MMC.

Some more info can be found on the product page and

datasheet.

• Works on Linux, Windows, VXWorks, and several RTOS

• Not free software (evaluation license available)

• VFS layer clear but core is obfuscated

23

http://www.datalight.com/products/embedded-file-systems/reliance-nitro
http://www.datalight.com/my-datalight/download?resource=1313

Filesystem considerations Available filesystems

HISTORY & SUPPORT EXT4

This file system is used in most of the Linux distribution that can

be found.

• EXT filesystem was created in April 1992

• EXT2 replaced it in 1993

• EXT3 evolution added a journal and was merged in 2001

• EXT4 arrived as a stable version in the Linux kernel in 2008

24

Filesystem considerations Available filesystems

PRINCIPLE EXT4

EXT4 is a journalized file system. It adds on top of EXT3:

• Large file support, and better performances on large files

• Journal checksum to improve reliability

• Fast fsck

• Better handling of fragmentation

EXT4 is backward compatible with previous versions, and

should provide better performances when used for EXT2 or

EXT3 devices.

25

Filesystem considerations Available filesystems

HISTORY & SUPPORT BTRFS

BTRFS is a new file system compared to EXT originally created

by Oracle in 2007.

• Mainlined in 2009

• Considered stable in 2014

It is already the default rootfs for openSUSE.

BTRFS inspires from both Reiserfs and ZFS.

26

Filesystem considerations Available filesystems

PRINCIPLE BTRFS

BTRFS stands for B-tree filesystem.

It brings new features to traditional filesystems:

• Cloning/snapshots

• Diffs (send/receive)

• Quotat

• Union

• Self healing (with commit periods defaulting to 30s)

27

Filesystem considerations Available filesystems

HISTORY & SUPPORT F2FS

F2FS is also a new filesystem created by Samsung and stands

for Flash Friendly filesystem.

F2FS was integrated in the Linux kernel in 2013, and is still

considered unstable, even though being used in several

consumer products already.

28

Filesystem considerations Available filesystems

PRINCIPLE F2FS

F2FS aims at creating a NAND flash aware filesystem.

It is a log filesystem, and can be tuned using many parameters

to allow best handling on different supports.

F2FS features:

• Atomic operations

• Defragmentation

• TRIM support

29

Filesystem considerations Available filesystems

HISTORY & SUPPORT FAT

FAT is a really simple yet lightweight and fast filesystem.

FAT exists for than 30 years and used to be the file system

used by default on SD Cards.

30

Filesystem considerations Available filesystems

PRINCIPLE FAT

FAT design is simple and therefore lacks the feature set of

modern filesystems, and doesn’t provide much reliability.

It relies on the File Allocation Table, a static table allocated at

format time. Any corruption of this table might be fatal to the

entire filesystem.

FAT and flash memory

Since flash memory used to be shipped pre-formatted with a FAT

filesystem, several FTL were optimized for it and deliver the best

performances when used with FAT.

31

Filesystem considerations Available filesystems

HISTORY & SUPPORT XFS

XFS was developed by SGI in 1993.

• Added to Linux kernel in 2001

• On disk format updated in Linux version 3.10

32

Filesystem considerations Available filesystems

PRINCIPLE XFS

XFS is a journaling filesystem.

• Supports huge filesystems

• Designed for scalability

• Does not seem to be handling power loss well

33

Filesystem considerations Available filesystems

HISTORY & SUPPORT NILFS2

NILFS stands for New implementation of log filesystem.

• Developed by Nippon Telegraph and Telephone

Corporation

• NILFS2 Merged in Linux kernel version 2.6.30

34

Filesystem considerations Available filesystems

PRINCIPLE NILFS2

As its name shows, NILFS2 is a log filesystem.

• Relies on B-Tree for inode and file management

• CoW for checkpoints and snapshots.

• Userspace garbage collector

35

Filesystem considerations Available filesystems

JOURNALIZED

A journalized filesystem keep track of every modification in a

journal in a dedicated area.

• The journal allow to restore a corrupted filesystem

• Modification is first recorded in the journal

• Modification is applied on the disk

• If a corruption occurs: FS will either keep or drop the

modification

I Journal is consistent: we replay the journal at mount

time

I Journal is not consistent: we drop the modification

36

Filesystem considerations Available filesystems

JOURNALIZED

Well known journalized filesystems:

• EXT3, EXT4

• XFS

• Reiser4

37

Filesystem considerations Available filesystems

B-TREE/COW

B+ tree is a data structure that generalized binary trees.

Copy on write is a mechanism that will allow an immediate

copy of a data, and perform the real copy only when one tries to

update.

CoW is used to ensure no corruption occurs at runtime:

• Modification done on a file is done on a copy of the block

• Old version of the block is preserved until modification is

fully done: transaction commited

• If an interruption occurs while writing the new data, old

data can be used.

38

Filesystem considerations Available filesystems

COW

Well known filesystems using CoW:

• ZFS

• BTRFS

• NILFS2

39

Filesystem considerations Available filesystems

LOG

A log filesystem will write data and metadata sequentially to

the storage as a log.

• Recovering from corruption is done by using the last

consistent block of data in the log for each entry.

• The tail of the log as to be reclaimed as free space in the

background: garbage collection

Log filesystems take the assumptions that read requests will

result in cache hit, since files are scattered on the storage,

making it slower.

40

Filesystem considerations Available filesystems

LOG

Well known log filesystems:

• F2FS

• NILFS2

• JFFS2

• UBIFS

41

Performances

Filesystem considerations Performances

CLASSES

The concept of classes describe the minimum speed (write

speed) of an SD Card:

Class name Min speed

Class 2 2 MB/s

Class 4 4 MB/s

Class 6 6 MB/s

Class 10 10 MB/s

UHS1 10 MB/s

UHS3 30 MB/s

43

Filesystem considerations Performances

HARDWARE USED

The following tests are performed using 3 different SD Cards

and 1 eMMC chip:

• Kingston class 10

• Samsung class 10

The testing is done on a beagleboneblack since it offers on

eMMC be default:

• Micron MTFC4GLDEA 0M WT (eq class 6)

44

Filesystem considerations Performances

SOFTWARE TOOLS

The testing are performed using the following software

components:

• Linux kernel 3.12.10

• Linux kernel 3.19

• buildroot rootfs

• fio 2.1.4

• e2fsprogs 1.42.12

• btrfs-tools 3.18.2

• f2fs-tools git (2015-02-18)

• xfsprogs 3.1.11

• nilfs-tools 2.2.1

45

Filesystem considerations Performances

PARAMETERS USED

One document gives hints to tune some filesystems for NAND

based flash operation. It is available on eLinux:

EMMC-SSD File System Tuning Methodology

Common options are:

• noatime: minimize writes

• discard: enable use of TRIM

46

http://eLinux.org/images/b/b6/EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf

Filesystem considerations Performances

PARAMETERS USED

EXT4

• Disable journal: faster write (but less reliable)

• mkfs --stripe size options. Should be the number of

blocks inside an erase block.

BTRFS

• SSD mode (automatic)

• mkfs --leafsize option. Should be equal to block size

F2FS

• mkfs -s and -z options. s should be erase size and z 1

47

Filesystem considerations Performances

PARAMETERS USED CONT'D

XFS

• mkfs -b Should be equal to block size

NILFS2

• mkfs -b Should be equal to block size

• mkfs -B number of blocks in 1 segment. Should be the

number of blocks inside an erase block.

48

Filesystem considerations Performances

PARAMETERS USED

Using the geometry tuning is not portable:

• Requires to run some benchmark to first detect the MMC

geometry

• Check if there is a real gain.

tuning

flashbench can help deduce correct geometry by analyzing per-

formance gaps.

49

Filesystem considerations Performances

BANDWIDTH

Several use cases will be tested using fio using only the latest

kernel version 3.19

1. Mono threaded random read

I ex: boot time

2. Mono threaded random write

I ex: data write into database

3. Mono threaded sequential read

I ex: video streaming

4. Mono threaded sequential write

I ex: video capture/recording

5. Multi threaded sequential/random read/write

I ex: a real system with high I/O load

50

Filesystem considerations Performances

FIO

fio is an I/O generation tool used for benchmarking

• Highly configurable

• Offers a lot of parameters

• Description of jobs

• Exports a lot of statistics

51

Filesystem considerations Performances

BANDWIDTH TEST CONDITIONS

fio job description

1 name=<test name>
2 rw=[randread | randwrite | read | write]
3 size=500MB
4 blocksize=[4MB | 4kB]
5 nrfiles=50
6 direct=[0 | 1]
7 buffered=[1 | 0]
8 numjobs=1
9 ioengine=libaio

52

Filesystem considerations Performances

READ PERFORMANCES DIRECT

RandLarge SeqLarge RandSmall SeqSmall
0

10

20

B
a
n
d
w
id
th

(M
B
/s
)

EXT4 BTRFS F2FS XFS NILFS2 FAT

• Filesystems are not the bottleneck when reading

• Large buffers show better performances

• Sequential or Random is not a problem when reading
53

Filesystem considerations Performances

READ PERFORMANCES BUFFERED

RandLarge SeqLarge RandSmall SeqSmall
0

10

20

B
a
n
d
w
id
th

(M
B
/s
)

EXT4 BTRFS F2FS XFS NILFS2 FAT

• Small buffers are fast when using non direct I/O and

maximize the bandwidth

54

Filesystem considerations Performances

READ BUS USAGE (BUFFERED / DIRECT)

RandLarge SeqLarge RandSmall SeqSmall
80
85
90
95

100

P
e
rc
e
n
ta
g
e
x
la
b
e
l

RandLarge SeqLarge RandSmall SeqSmall
80
85
90
95

100

P
e
rc
e
n
ta
g
e
x
la
b
e
l

EXT4 BTRFS F2FS XFS NILFS2 FAT

55

Filesystem considerations Performances

READ BUS USAGE

• Direct mode: small buffered cannot be merged

• Buffered mode: sequential small buffers maximize

throughput

56

Filesystem considerations Performances

WRITE PERFORMANCES DIRECT

RandLarge SeqSmallRandSmallSeqLarge
0

5

10

B
a
n
d
w
id
th

(M
B
/s
)

EXT4 BTRFS F2FS XFS NILFS2 FAT

• F2FS and NILFS2 are the fastest in all cases

57

Filesystem considerations Performances

WRITE PERFORMANCES BUFFERED

RandLarge SeqSmallRandSmallSeqLarge
0

5

10

B
a
n
d
w
id
th

(M
B
/s
)

EXT4 BTRFS F2FS XFS NILFS2 FAT

• F2FS shows impressive buffered write performances (log

designed)

• Buffering really helps BTRFS again with small sequential

buffers 58

Filesystem considerations Performances

WRITE PERFORMANCES BUS USAGE

• Bus usage is close to 100% (buffered or direct) when

writing

• F2FS clearly shows the best performances by far on this

Samsung class 10 SD Card

59

Filesystem considerations Performances

MIXED PERFORMANCES

DirectRead DirectWrite BufferedReadBufferedWrite
0

1

2

3

B
a
n
d
w
id
th

(M
B
/s
)

EXT4 BTRFS F2FS XFS NILFS2 FAT

60

Filesystem considerations Performances

MIXED PERFORMANCES

• F2FS scales better on buffered I/O

• EXT4 is for once way below both BTRFS and F2FS

• XFS doesn’t scale that well on MMC

• NILFS2 results might be wrong and need to be checked

61

Filesystem considerations Performances

READ PERFORMANCES SUPPORTS

Samsung Kingston
0

10

20

B
a
n
d
w
id
th

(M
B
/s
)
la
b
e
l
s
ty
le

EXT4 BTRFS F2FS

62

Filesystem considerations Performances

WRITE PERFORMANCES SUPPORTS

Samsung Kingston
0

5

10

B
a
n
d
w
id
th

(M
B
/s
)
la
b
e
l
s
ty
le

EXT4 BTRFS F2FS

63

Filesystem considerations Performances

WRITE PERFORMANCES SUPPORTS

Test done on direct I/O, large sequential blocks.

• Both SD Cards show approximately the same

performances

• No specific tuning in F2FS for Samsung SD Cards

64

Filesystem considerations Performances

BOOT TIME

Description:

• Load the MMC with the buildroot rootfs (about 15MB)

• Measure time using grabserial between the mounting of

the rootfs and the console prompt

Note

The kernel rootfstype will be set to the fs type in order to avoid

the lookup of the filesystem.

65

Filesystem considerations Performances

BOOT TIME DEPENDING ON KERNEL VERSION

3.12.10 3.19.0
0

200

400

600

800
T
im
e
(m

s
)

EXT4 BTRFS F2FS XFS NILFS2

• Great performance gain for last 18 month

• Gap is closing between EXT4 and challengers

66

Filesystem considerations Performances

BOOT TIME VARIATIONS DEPENDING ON KERNEL VERSION

3.12.10 3.19.0
0

10

20

30
T
im
e
(m

s
)

EXT4 BTRFS F2FS XFS NILFS2

• EXT4 and XFS variations makes them less deterministic

• Linux 3.19 shows 1% max variation for EXT4 and less

0.3% for the others

67

Filesystem considerations Performances

BOOT TIME DEPENDING ON SUPPORT

Kingston Samsung eMMC
0

200

400

T
im
e
(m

s
)

EXT4 BTRFS F2FS XFS NILFS2

• All 3 shows same kind of figures

68

Filesystem considerations Performances

MOUNT TIME

Description:

• Load the MMC with a large rootfs (1GB) 60% filled

• Measure time using time for the mount command to run

Note

The filesystem type needs to be specified using the -t option in

order to avoid the lookup of the filesystem.

69

Filesystem considerations Performances

MOUNT TIME

Real User System
0

200

400

600

800

T
im
e
(m

s
)

EXT4 BTRFS F2FS XFS NILFS2 FAT

• F2FS & NILFS2 show bigger delay for mounting even a

clean partition

• XFS shows the biggest delay for mounting even a clean

partition

• Kernel operations are comparable

70

Filesystem considerations Performances

TEST DESCRIPTION

Description:

• Mount the filesystem

• Perform a fixed amount of I/O operations on the

mountpoint: 38GB

• Measure time using /proc/[pid]/stat for every kernel

thread

71

Filesystem considerations Performances

TEST RESULTS

Background
0

200

400

600

800

T
ic
k
s

EXT4 BTRFS F2FS XFS NILFS2

• Even though CPU usage can vary by 1 order of

magnitude, Background tasks are negligible.

72

Filesystem considerations Performances

CPU USAGE

Description:

• Mount the filesystem

• Perform a fixed amount of I/O operations on the mountpoint

• Extract time using fio output

73

Filesystem considerations Performances

EFFICIENCY

WriteLarge WriteSmall ReadLarge ReadSmall
0

5

10

P
e
rc
e
n
ta
g
e

EXT4 BTRFS F2FS XFS NILFS2 FAT

74

Filesystem considerations Performances

EFFICIENCY CONT'D

WriteLarge WriteSmall ReadLarge ReadSmall
0

5

10

15

P
e
rc
e
n
ta
g
e
(n
o
rm

a
liz
e
d
)

EXT4 BTRFS F2FS XFS NILFS2 FAT

75

Filesystem considerations Performances

EFFICIENCY

The tests show the average CPU usage for the duration of the

complete test.

• Needs to compare with I/O real duration

• Write operation takes longer than CPU to copy: Uses less

relative CPU time

• BTRFS is not CPU efficient

• F2FS and NILFS2 uses more CPU for writing but I/O

duration is shorter

• F2FS is clearly more efficient than NILFS2

76

Tools

Filesystem considerations Tools

MKFS TOOL

This is the most basic task done by mkfs:

• mkfs.ext4 [-d <offline folder>] only with patches

• mkfs.btrfs [--rootdir <offline folder>]

• mkfs.f2fs

• mkfs.xfs

• mkfs.f2fs

78

Filesystem considerations Tools

MKFS STATS

Statistics on filesystem after formatting:

FS Total Empty MB used

EXT4 976 MB 1.3 MB

BTRFS 1024 MB 0.25 MB

F2FS 1023 MB 141 MB

XFS 981 MB 32 MB

NILFS 936 MB 16 MB

79

Filesystem considerations Tools

Once mounted all filesystems will create kernel threads.

• EXT4: 2 kthreads

• BTRFS: 23 kthreads

• F2FS: 1 kthread

• XFS: 5 kthreads

• NILFS: 1 kthread

80

Filesystem considerations Tools

FSCK

Only 4 filesystems offer file system check

• fsck.ext4

• btrfs check

• fsck.f2fs

• fsck.xfs or xfs_repair

• NILFS will always mount the latest consistent checkpoint

81

Filesystem considerations Tools

FSCK

Statistics on clean filesystem check tool:

FS Real time Sys time + User time

EXT4 60 ms 0 ms + 10 ms

BTRFS 130 ms 20 ms + 40 ms

F2FS 2090 ms 960 ms + 740 ms

XFS 1320 ms 300 ms + 0 ms

NILFS NA NA

82

Filesystem considerations Tools

EXT4 EXTRA

The different packages that brings utilities for every filesystem

usually contains the basic formatting and check tools.

• debugfs Filesystem debugger (advanced)

• dumpe2fs Dumps filesystem info

• e2image Backup metadatas

• e2label Changes the label of a filesystem

• e4defrag Online defragmenter

83

Filesystem considerations Tools

EXT4 EXTRA CONT'D

• e2fsck Filesystem check

• fsck.ext4 link to e2fsck

• mke2fs Creates a filesystem

• mkfs.ext4 link to mke2fs

• resize2fs Offline resize partition

• tune2fs Changes options on an existing filesystem

84

Filesystem considerations Tools

BTRFS EXTRA

BTRFS offers a lot of extra features. Most of them are available

as subcommands of btrfs master command.

• btrfs Master command for accessing most of the BTRFS

features.

I subvolume Manages subvolumes

I filesystem Manages options

I balance device replace Manages devices

I scrub Erase a filesystem

I check Filesystem check

I rescue Filesystem rescue

85

Filesystem considerations Tools

BTRFS EXTRA CONT'D

• btrfs-convert Converts EXT filesystem to BTRFS

• btrfs-debug-tree Dumps filesystem info

• btrfstune Changes options on an existing filesystem

• fsck.btrfs Does nothing (compatibility)

• mkfs.btrfs Creates a filesystem

BTRFS tools

Due to its structure, BTRFS cannot reliably show disk space us-

age using traditional tools and one must rely on btrfs command

for this.

86

Filesystem considerations Tools

F2FS EXTRA

F2FS is still new and doesn’t really offer any extra feature:

• mkfs.f2fs Creates a filesystem

• fsck.f2fs Filesystem check

87

Filesystem considerations Tools

XFS EXTRA

• xfs_repair

• xfs_fsr: Online reorganize filesystem

• xfs_growfs: Offline resize partition

• xfs_freeze: Suspend/Resume all access to filsystem

• xfs_admin: Changes options on an existing filesystem

• XFS realtime sections: Made for low latency files

88

Filesystem considerations Tools

NILFS2 EXTRA

• nilfs_cleanerd/nilfs-clean: Garbage collector

• nilfs-tune: Changes options on an existing filesystem

• nilfs-resize: Offline resize partition

• chcp: Convert checkpoints into snapshots

• lscp: List checkpoints and snapshots

• mkcp: Create checkpoints or snapshots

• rmcp: Remove checkpoints or snapshots

89

Reliability

Filesystem considerations Reliability

TESTING FS RELIABLILITY

Testing the filesystem reliability can be done using several

use cases:

• Power loss while writing files

• Corrupted writes

• Blocks going bad

91

Filesystem considerations Reliability

TESTING FS RELIABLILITY

To simulate these:

• Watchdog to trigger hard reboot on a system to simulate

how likely the fs will fail

• Device mapper dm-flakey module to simulate how the fs

recovers from errors

I Ignore all writes after a certain period using

drop_writes

I Corrupt writes after a certain period using

corrupt_bio_byte

I Corrupt reads after a certain period using

corrupt_bio_byte

92

Filesystem considerations Reliability

CORRUPTION OF THE FILESYSTEM

Description:

• Test auto starts with the board

• Mounts with sync and async options

• Write files and rely on the watchdog to cut power

• Check for mount return code, mount errors/warnings, fsck

result

• Test ran for 226 iterations for each use case

93

Filesystem considerations Reliability

CORRUPTION OF THE FILESYSTEM MOUNTED ASYNC

Errors AutoFix Fsck Fatal
0

50

100
P
e
rc
e
n
ta
g
e

EXT4 BTRFS F2FS XFS NILFS2

• EXT4 async filesystem sometimes require journal

recovery

• All filesystem never got corrupted enough to require fsck
94

Filesystem considerations Reliability

CORRUPTION OF THE FILESYSTEM MOUNTED SYNC

Errors AutoFix Fsck Fatal
0

50

100
P
e
rc
e
n
ta
g
e

EXT4 BTRFS F2FS XFS NILFS2

• F2FS sync filesystem almost always requires fixing

• BTRFS showed errors only 3 errors times

• No filesystem ever got corrupted enough to require fsck
95

Filesystem considerations Reliability

DETECTION/RECOVERY OF CORRUPTED FILES

Description:

• Prepare corruption model by mount all filesystems using

dm-flakey and corrupt the first byte of each block: write 00

I Corrupt all writes after 10 seconds

I Corrupt all writes for 1 seconds then allow writes for 1

second (trickiest)

• Perform the write

I Write a 30MB random file and sync the device

I Write multiple 1MB file and sync the disk

• Unmount and remount the partition normally then inspect

its content

96

Filesystem considerations Reliability

DETECTION/RECOVERY OF CORRUPTED FILES

AutoRO AutoFix Fsck Fatal
0

5

10

15

O
c
u
rr
e
n
c
e
s

EXT4 BTRFS F2FS XFS NILFS2

Test done on 15 iterations

97

Filesystem considerations Reliability

DETECTION/RECOVERY OF CORRUPTED FILES

• EXT4: filesystem does not mount properly

I Sometime turns filesystem RO

I fsck required

I Output file is present but zeroed or emptied

98

Filesystem considerations Reliability

DETECTION/RECOVERY OF CORRUPTED FILES

• BTRFS: filesystem mounts immediately

I Sometime turns filesystem RO

I Loses the corrupted file or present files with I/O error

I Filesystem keeps running as expected

I Can be unfixable if internal structure checksums are

corrupted (backup sb?)

I Best detection of corruption

99

Filesystem considerations Reliability

DETECTION/RECOVERY OF CORRUPTED FILES

• F2FS: filesystem takes up to several minutes to mount

I Most robust to this kind of corruption

I Sometime turns filesystem RO

I Auto recovery recovers most of the data (file is there

with corrupted bytes)

I File is sometimes corrupted with no warning but

dmesg

100

Filesystem considerations Reliability

DETECTION/RECOVERY OF CORRUPTED FILES

• XFS: Recovery can clean some old files when used with

most agressive options

I

I Sometime feezes the filesystem

I Auto recovery recovers from small corruptions

I Recovered file can be truncated.

101

Filesystem considerations Reliability

DETECTION/RECOVERY OF CORRUPTED FILES

• NILFS2: Filesystem can sometimenot mount at all

I No way to recover anything since no fsck

I Auto recovery recovers most of the data (file is there

with corrupted bytes)

I File is sometimes corrupted with no warning but

dmesg

I Umounting a corrupted NILFS2 system can hang

undefinitely

102

Filesystem considerations Reliability

DETECTION/RECOVERY OF CORRUPTED FILES

Fatal corruptions

Fatal corruptions only occured when writing corrupted bytes

(0x00 at offset 0).

103

Conclusion

Filesystem considerations Conclusion

PERFORMANCES

When it come to performances:

• EXT4 used to be the best match for embedded systems

using eMMC for a long time

• New reliable and powerful alternatives are growing quickly

• F2FS and NILFS2 show impressive write performances

• Performances are still device dependent and requires

measurements

Feature wise:

• BTRFS is a next generation filesystem

• NILFS2 provides simpler but similar features

105

Filesystem considerations Conclusion

SCALABILITY

Scalability:

• Embedded systems can have several cores

• Embedded systems can do extensive IO operations

• EXT4 clearly doesn’t scale as well as BTRFS and F2FS

• XFS scalability works better on spinning disk or high

bandwidth supports

Productization:

• EXT4 is the most mature

• Google uses F2FS in its phones

I Moto X, G, E family

I Userdata partition only

I System still a ro EXT4
106

Filesystem considerations Conclusion

RECOMMENDATIONS

Next steps:

• re-do all tests with larger datasets

• compare on lower class (Class 4) and see if the gaps are

smaller

• benchmark to extract flash tuned params and compare

tuned versions

107

Filesystem considerations Conclusion

RECOMMENDATIONS

108

Filesystem considerations Conclusion

USEFUL LINKS

Filesystem performances on various kernel versions:

• http://www.phoronix.com

Benchmarking

• fio-output-explained.html

• EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf

Filesystem technical documents:

• BTRFS: http://lwn.net/Articles/576276/

• F2FS: http://haifux.org/lectures/293/f2fs.pdf

• F2FS: http://lwn.net/Articles/518988

• NILFS: http://www.nilfs.org/papers/overview-v1.pdf

109

http://www.phoronix.com
https://tobert.github.io/post/2014-04-17-fio-output-explained.html
http://eLinux.org/images/b/b6/EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf
http://lwn.net/Articles/576276/
http://haifux.org/lectures/293/f2fs.pdf
http://lwn.net/Articles/518988
http://www.nilfs.org/papers/overview-v1.pdf

Filesystem considerations Conclusion

QUESTIONS

110

	Introduction
	Block devices
	Hardware considerations
	Block versus memory technology devices
	Constrains of embedded storages

	Available filesystems
	List of candidates
	EXT4
	BTRFS
	F2FS
	FAT
	XFS
	Type of filesystems

	Performances
	Context and tools
	Bandwidth
	Boot time
	Mount time
	Background tasks
	CPU usage

	Tools
	Formatting
	House keeping
	Recovering
	Extra

	Reliability
	Context and tools
	Detection/recovery of corrupted files

	Conclusion

