
Towards PREEMPT_RT for the Full Task 
Isolation

Jim Huang, BiiLabs Co., Ltd.
Oscar Shiang, National Cheng Kung University

Jun 23, 2022



Goals vs. Non-Goals
● Goals

○ Why NOHZ is not sufficient for task isolation

○ Identify the source of noise, crucial to PREEMPT_RT

○ Task isolation = escape from noise, by introducing isolation mechanism (existes for a long time)

○ Problem of current task isolation → Definition of “full” task isolation

○ Revisit the evolution of full task isolation ⇒ Meanwhile, review the existing problems.

● Non-goals

○ Jailhouse or hypervisor-based solution

○ Yet another RT patchset ⇒ Minimize the necessary changes, it works even for non-RT.



Sources of noises
● Interrupt

○ Interrupt handlers (IRQ, SoftIRQ)

○ Scheduling tick

● I / O ⇒ e.g. blocking to receive data from socket

● Kernel housekeeping works

○ Unbounded works, e.g. rcuo, timer

○ Bounded works, e.g. rcuc, vmstat_update



Full task isolation
● Definition

○ Provides a (nearly) bare-metal-like environment for computationally intensive or 

real-time applications to run on



Current infrastructure for task isolation

2002

Introduce sched_setaffinity 
for specifying a set of CPUs on 
which a thread a eligible to run in 
v2.5.8

2004

Add isolcpus to allow CPUs 
to be removed from 
scheduling domain and load 
balancing in v2.6.9

2012

RCU callback offloading is 
proposed in v3.8

2013

NO_HZ_FULL reduces the tick 
to 1HZ since v3.10

2018

Remove the last 1HZ residual 
timer in NO_HZ_FULL in v4.17



sched_setaffinity mechanism
● The first mechanism for isolating tasks in Linux (v2.5.8)

● Control each CPU affinity mask of the task to indicate which CPUs can it run 

on

● Need to manipulate each masks to achieve task isolation



CPU isolating mechanism
● Remove the specified CPUs from scheduling domain

● Isolate processes from selected CPUs by default

● Processes will not be migrated to the isolated CPUs during load balancing



NO_HZ_FULL mechanism
● Reduce timer tick when the system does not need to do scheduling

● Timer tick may not be disabled easily. ⇒ it has some dependencies:
○ POSIX timer

○ Perf event

○ Clock unstable

○ Scheduler: need to perform preemption

○ RCU callback lifecycle accounting and handling



RCU Callback Offloading Mechanism
● Generally, Linux needs to do grace period accounting and callback invocation 

to prevent itself from freezing due to RCU

● Callback execution and accounting can add significant jitter

● Offloads RCU callbacks lifecycle handling and execution out of the 

enqueuer's CPU to specific kthreads instead (rcuo and rcuog)



Problems for Current Infrastructure
● It is suitable for isolating from unbounded works by setting affinity masks or 

passing isolcpus= and nohz_full= as kernel parameters

● But it fails to prevent bounded works from interrupting task isolating CPUs, 

e.g. vmstat_update worker will be queued to per-cpu run queues and 

executed every second by default



Task Isolation Patches
● Originally proposed by Chris Metcalf (2015)

● Features
○ Provide configuration via prctl

○ Evaluate the possibility to disable tick at the beginning of task isolation

○ Cancel vmstat_update worker

○ Drain pagevecs to avoid IPI

● Problem
○ The kernel may busy-wait until there is no more pending timers to run



What Alex Belits did
● Changes based on Chris’ one (2019 - 2020)

○ Prevent IPI from sending to isolated cores

○ Add hooks to enable isolation at syscall, IRQ and IPI entries

● Problems
○ Break some semantic of kernel API, e.g. kick_all_cpu_sync but will not sync on isolated 

cpu

○ Race condition when changing isolation mask

○ The modification across several paths including syscalls, IRQ, irqchip

○ ARM64 only



What Marcelo Tosatti did (since 2021)
● Aim to improving KVM’s performance
● Fine-grained configuration, he believe to have the flexibility to decide which 

interruptions are acceptable to our own system
● Only supports cancelling vmstat_update worker

○ Less impact to kernel since the frequency of update can be modified via sysctl
○ The cost of updating vmstat is more expensive in KVM

● Problem
○ TIF must be updated if the task isolated task is preempted via preempt_notifier



API Usage (based on Marcelo’s patch)
● Configure: set the feature bits you would like to use (only 

ISOL_F_QUIESCE_VMSTATS for now)

● Activate: activate specified features
unsigned long long fmask;

ret = prctl(PR_ISOL_CFG_GET, I_CFG_FEAT, 0, &fmask, 0);
if (ret != -1 && fmask != 0) {
        ret = prctl(PR_ISOL_ACTIVATE_SET, &fmask, 0, 0, 0);
        if (ret == -1) {
                perror("prctl PR_ISOL_ACTIVATE_SET");
                return ret;
        }
}



API Usage (take oslat as example)
● Use prctl to mark the beginning and end latency-sensitive section
● Take the mainloop of oslat as example

static void doit(struct thread *t)
{
        unsigned long long isol_mask;
        <...>
        /* Retrieve default configuration */
        ret = prctl(PR_ISOL_CFG_GET, I_CFG_FEAT, 0, &isol_mask, 0);
        if (ret != -1 && isol_mask != 0)
                /* Enable task isolation if supported */
                prctl(PR_ISOL_ACTIVATE_SET, &isol_mask, 0, 0, 0);
        <...>
        /* Disable all task isolation features */
        if (isol_mask != 0) {
                isol_mask = 0;
                prctl(PR_ISOL_ACTIVATE_SET, &isol_mask, 0, 0, 0);
        }
}

https://people.redhat.com/~mtosatti/task-isol-v6-userspace-patches/rt-tests-task-isolation.patch


● oslat (from rt-tests suite): Poll the timer value repeatedly, which can 

stimulate the some usage, i.e. userspace network driver

● Function tracer: kernel tracer which record the behavior of system (including 

executed functions and events)

● OSNOISE tracer: new kernel tracer introduced in v5.12. It has similar behavior 

to oslat but can record more information (actual executing time, type of noise) 

about the candidate noises

Benchmarking Tools



● tuned: machine tuning tool developed by Red Hat. It can be used in several 

scenarios and help us to configure systems in straightforward ways

● stress-ng: a stress tool that generate various kinds of workload, e.g. VM, 

timer interrupts, 

Tools for Tuning and Workload Generation



Benchmarking Scenarios
● The basic idea is to test the behavior and the effectiveness of task isolation 

patch

● We focus on the scenarios that have intensive accesses to memory, which 

forces vmstat_update to synchronize the statistic data between cores 

frequently

● Based on this idea, we design 3 different workloads
○ frequent page faults 

○ frequent OOM kills

○ Mixed workload (page faults + OOM kills)



Choice and Configuration on Platforms
● We choose 2 platforms to do experiments

○ Raspberry Pi 4B (ARM64, w/ BCM2711 SoC, Quad core Cortex-A72, 4 GiB RAM)

○ KVM (x86_64, 4 vCore, 4 GiB RAM)

● Both are configured with:

○ /proc/cmdline: skew_tick=1

○ Tuned: use realtime-virtual-host profile to isolated a single core



Benchmarking Steps
1. Configuration: choose the tracer, the events we want to record, 

2. Warming-up: start the workload on non-isolated cores and wait 5 sec for 

preheating

3. Benchmarking: run the tracer and record the possible noises and 

corresponding events

Note: see detailed steps in osnoise-measure.sh

https://gist.github.com/OscarShiang/1d66a4e14654106f4999b063a6f1ba99


Experiments
● Based on kernel v5.15.18-rt28, applied with Marcelo’s v12 patches

● Measured by oslat from rt-tests, to catch all possible interferences

● Tested on 2 different platforms: ARM64 and x86_64 KVM

● Runed with 3 different workloads generated by stress-ng:

○ Major / minor page faults

○ VM / mmap with OOM

○ Mixed with page faults, VM and mmap



Experiments

ARM64

x86_64 
KVM

Major / minor page fault vm / mmap w/OOM page faults, VM and mmap



Discussions
● By applying the patches and enabling task isolation, all test cases have lower 

latencies in average

● In ARM64, since the system is clean and doesn’t run with other applications, 

task isolation brings an improvement about 2+ us to latency

● For x86_64 KVM, it brings about 10 us latency reduction. It shows that the 

isolation from vmstat_update is still usable in KVM

● The maximum latency is still high (about 200 us in ARM64 and 900 us in 

x86_64 KVM) ⇒ there are still other interferences that should be isolated



Conclusion + Insights
● No silver bullet yet – on the way to full task isolation. i.e. , no general solution 

exists.
● V12 as base, extra efforts are needed for full task isolations

https://en.wikipedia.org/wiki/The_Mythical_Man-Month

