
Sergio Prado

Toradex

Designing OSTree based
embedded Linux systems
with the Yocto Project

Yocto Project Summit 2021

$ WHOAMI
✗ Designing and developing embedded software for 25+ years.

✗ Software Team Lead at Toradex (https://www.toradex.com/).

✗ Consultant/trainer at Embedded Labworks (e-labworks.com/en).

✗ Open source software contributor, including Buildroot, Yocto
Project and the Linux kernel.

✗ Sometimes write technical stuff at https://embeddedbits.org/.

✗ Social networks:
Twitter: @sergioprado
Linkedin: https://linkedin.com/in/sprado

https://www.toradex.com/
https://e-labworks.com/en
https://embeddedbits.org/
https://linkedin.com/in/sprado

AGENDA

1. Introduction to OSTree

2. Booting and running an OSTree-based system

3. Building an OSTree-based system with meta-updater

4. Remote updates with OSTree-based systems

WHAT IS OSTREE?

✗ OStree, also known as libostree, provides a "git-like" model for committing
and downloading bootable filesystem trees (rootfs).

✗ It’s like Git, in a sense that it stores checksum'ed files (SHA256) in a
content-addressed object-store.

✗ It’s different from Git, because files are checked out via hard links, and
they are immutable (read-only) to prevent corruption.

✗ Designed and currently maintained by Colin Walters (GNOME, OpenShift,
RedHat CoreOS developer)

A FEW OSTREE USERS

✗ Linux distributions:

✗ GNOME Continuous, Gnome OS

✗ Fedora CoreOS, Fedora Silverblue, Fedora IoT

✗ Endless OS

✗ Linux microPlatform

✗ TorizonCore

✗ Package management systems:

✗ rpm-ostree

✗ flatpak

OSTREE IN A NUTSHELL

✗ A Git-like content-addressed object store, where we can store individual files or
full filesystem trees.

✗ Provides a mechanism to commit and checkout branches (or "refs").

✗ Manages bootloader configuration via The Boot Loader Specification, a standard
on how different operating systems can cooperatively manage a boot loader
configuration (GRUB and U-Boot supported).
https://www.freedesktop.org/wiki/Specifications/BootLoaderSpec/

✗ It operates entirely in userspace via a library and CLI tools, and will work on top
of any Linux filesystem.

https://www.freedesktop.org/wiki/Specifications/BootLoaderSpec/

HANDS-ON 1: OSTREE

USING OSTREE AS A ROOTFS (1)

✗ In the main storage partition, we have basically two directories, the boot
directory (/boot) and the OSTree repository (/ostree), mounted at
/sysroot.

✗ Filesystem trees (also called deployments) are checked out at
/sysroot/ostree/deploy/<os>/deploy/<commit>/ (files there are just hard
links to objects in the repository).

✗ A deployment is bind-mounted as a read-write rootfs at /, and the /usr
directory from the deployment is bind-mounted read-only at /usr.

USING OSTREE AS A ROOTFS (2)

✗ Runtime generated data should go to /var (bind mounted at
/sysroot/ostree/deploy/<os>/var/) and other writable/persistent
directories also links to /var (e.g. /home -> /var/rootdirs/home).

✗ Operating system configuration (/etc) is handled in a special way (it starts
with the content of /usr/etc, but you can write to it, and the changes are
kept during new deployments).

OSTREE FILESYSTEM LAYOUT (SIMPLIFIED)

.
├── boot
│ ├── loader
│ │ └── uEnv.txt
│ └── ostree
│ └── <os-commit>
│ ├── board.dtb
│ ├── ramdisk
│ └── zImage
└── ostree
 ├── deploy
 │ └── <os>
 │ ├── deploy
 │ │ └── <commit>
 │ │ ├── bin
 │ │ ├── dev
 │ │ ├── etc
 │ │ ├── home
 │ │ ├── sbin
 │ │ ├── usr
 │ │ ├── var
 │ │ └── ...
 │ └── var
 └── repo

/
├── bin
├── boot
├── dev
├── etc
├── home
├── lib
├── proc
├── run
├── sbin
├── sys
├── sysroot
├── tmp
├── usr
└── var
 ├── lib
 ├── local
 ├── log
 ├── rootdirs
 │ ├── home
 │ ├── media
 │ └── mnt
 ├── run
 ├── tmp
 └── volatile

storage device runtime

DEPLOYING A NEW OS

✗ A new deployment directory from a OSTree commit is created at /sysroot/
ostree/deploy/<os>/deploy/<commit>/.

✗ OSTree performs a 3-way merge in /etc using 1) the old default
configuration, 2) the current configuration and 3) the new default
configuration.

✗ Kernel artifacts (kernel, device tree, ramdisk, etc) are copied from the
deployment to /boot/ostree/<os>-<commit>, and bootloader configuration
files may be changed.

HANDS-ON 2: BOOTING/RUNNING WITH OSTREE

OSTREE INTEGRATION

1. Generate the sysroot partition with the boot directory (/boot) and the OSTree repository
(/ostree).

2. Prepare the default deployment in /sysroot/ostree/deploy/<os>/deploy/<commit>/.

3. Make sure U-Boot will be able to load and boot the kernel artifacts (kernel image, device
tree, ramdisk).

4. Boot a ramdisk image that will mount the OSTree deployment and switch to it.

5. Make sure to follow OSTree "requirements": UsrMove, imuttable system (/usr is read-
only), OS configuration in /etc, data in /var.

The first 4 steps are already (mostly) implemented in meta-updater!

META-UPDATER

✗ Yocto Project/OpenEmbedded layer for OSTree-based systems.

✗ Includes a client for remote updates called Aktualizr, based on the Uptane
standard.

✗ Configurable via variables that can be defined in a configuration file.
https://docs.ota.here.com/ota-client/latest/build-configuration.html

✗ Supported platforms include QEMU, Raspberry Pi, Intel Minnowboard,
BeagleBone Black, etc; and adding support to new platforms is not hard.
https://docs.ota.here.com/ota-client/latest/bsp-integration.html

https://docs.ota.here.com/ota-client/latest/build-configuration.html
https://docs.ota.here.com/ota-client/latest/bsp-integration.html

META-UPDATER INTEGRATION

✗ Create a board class for the machine (sota_{MACHINE}.bbclass), defining kernel image
type to be used, kernel command line parameters, boot script name, etc.

https://docs.ota.here.com/ota-client/latest/add-board-class.html

✗ Generate a physical image with the partitions in the correct place for OSTree compatibility
(the most common approach is to use Wic for that).

https://docs.ota.here.com/ota-client/latest/setup-boot-image-for-ostree.html

✗ Adapt distro to OSTree, like installing everything inside /usr (DISTRO_FEATURE +=
"usrmerge"), enable the needed filesystem types (ota-ext4 ostree.tar.bz2
ota.tar.xz wic), create boot script for inicialization.

https://docs.ota.here.com/ota-client/latest/add-meta-updater-to-vendors-sdk.html

https://docs.ota.here.com/ota-client/latest/add-board-class.html
https://docs.ota.here.com/ota-client/latest/setup-boot-image-for-ostree.html
https://docs.ota.here.com/ota-client/latest/add-meta-updater-to-vendors-sdk.html

REMOTE UPDATE SYSTEMS

✗ Package-based: Low bandwidth but unreliable and difficult to manage.

✗ Partition-based: Robust but consumes a lot of network bandwidth and
storage.

✗ Atomic differential: Combines robustness with minimal bandwidth and
storage consumption, adding some complexity to the operating system.

OSTREE IN AN UPDATE SYSTEM

✗ Atomic

✗ Delta-based

✗ On-the-fly

✗ Updates via HTTP

✗ Commits and deltas can be signed

HANDS-ON 3: UPDATING WITH OSTREE

OSTREE TRADE-OFFS

✗ OSTree is a very nice technology, but...

✗ OSTree adds complexity to the system, and we need to comply to its
requirements.

✗ Since there is only one physical filesystem, the system may become
unbootable if it gets corrupted due to hardware bugs, driver bugs, etc.

✗ Rollback logic is not part of OSTree, and should be implemented
separately, ideally in the bootloader.

LINKS

✗ OSTree project's repository:

https://github.com/ostreedev/ostree

✗ OSTree documentation:

https://ostreedev.github.io/ostree/

✗ meta-updater layer:

https://github.com/advancedtelematic/meta-updater

https://github.com/ostreedev/ostree
https://ostreedev.github.io/ostree/
https://github.com/advancedtelematic/meta-updater

Sergio Prado
sergio@embeddedbits.org

https://twitter.com/sergioprado
https://www.linkedin.com/in/sprado

Thank you!

Q&A

mailto:sergio@embeddedbits.org
https://twitter.com/sergioprado
https://www.linkedin.com/in/sprado

	Slide267
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide265

