
Wake-ups Effect on Idle Power for Intel's
Moorestown MID and Smartphone Platform

German Monroy
April 13th 2010

Collaborators: Arjan Van De Ven, Geoff Smith,
Pierre Tardy, Mark Gross, Eshwar P

Problem Statement

• Idle power reduction is important for mobile computing

• Time between battery charges for Laptops, Netbooks

• Even more critical for handhelds

• Turn off hardware components when not needed

• User inactive (e.g. in pocket)

• User active (e.g. between frames during video playback)

• In particular

• Atom processor supports deep CPU sleep states (C-states)

• Moorestown extends to platform sleep states

• For a given idle scenario

• Want to maximize utilization of the deepest sleep states

How can Linux be optimized to decrease platform power?

CPU Sleep States (C-states)

C0 C4 C0 C2 C0 C6 C0

time

p
o
w

e
r

HW

SW

t4 t4’ t2 t2’ t6 t6’

Lower power comes at the cost of longer latency

Wake ups = Timer or device interrupts

Kernel cpuidle governor (menu) chooses sleep state
based on history and next timer

Transition
power penalty

Tool #1: Powertop

• During specific interval
• Average and % C-state residency

• Average wakes from idle per second

• Top wake-up offenders
• Interrupts

• application or kernel timers

• Great for optimizing a SW stack
• Very easy to use

• Main limitations
• Doesn’t say when the wake ups

happened
• burst vs. periodic

• in or out of sync

• Doesn’t really measure power

Tool helped optimize gnome-based Moblin to ~3 wakes per second

Tool #2: ftrace plus spreadsheet

• ftrace function tracer

• Doesn’t load system

• ring buffer in memory, not storage

• not dumped to storage until tracing has
ended

• Dynamic add-remove functions to trace

• Additional ftrace_printk sometimes needed

• E.g. to find out which timer fired

• output timer address at programming and
at firing time

• Beware of local vs. global clock sources
for timestamps

• Timestamp coherency vs. cost tradeoff

• For deep C-states may need (expensive)
global clock source

• since TSC hardware gets powered off

• Tip: Use spreadsheet’s conditional
formatting to color a trace

• Helps in identifying patterns

146.237005 5E-05 power_end dummy=65535

146.237055 2.5E-05 power_start type=1 state=6

146.23708 3.4E-05 power_end dummy=65535

146.237114 3.3E-05 irq_handler_entry irq=22 handler=pmu

146.237147 1E-05 sched_wakeup task net_link_workq

146.237157 1.7E-05 irq_handler_exit irq=22 return=handled

146.237174 7E-06 softirq_entry softirq=1 action=TIMER

146.237181 4.1E-05 softirq_exit softirq=1 action=TIMER

146.237222 1.3E-05 sched_switch task swapper

146.237235 1.8E-05 workqueue_execution thread=net_link_workq 40

146.237253 2.3E-05 sched_switch task net_link_workq

146.237276 0.002859 power_start type=1 state=6

146.240135 4.8E-05 power_end dummy=65535

146.240183 5.5E-05 irq_handler_entry irq=0 handler=apbt0

146.240238 1.1E-05 irq_handler_exit irq=0 return=handled

146.240249 2.1E-05 softirq_entry softirq=1 action=TIMER

146.24027 8E-06 sched_wakeup task net_link_workq

146.240278 2.6E-05 softirq_exit softirq=1 action=TIMER

146.240304 0.000238 sched_switch task swapper

146.240542 6.9E-05 sched_switch task net_link_workq

146.240611 0.000399 power_start type=1 state=5013

146.24101 5.1E-05 power_end dummy=65535

146.241061 2.4E-05 power_start type=1 state=6

146.237005 5E-05 power_end dummy=65535

146.237055 2.5E-05 power_start type=1 state=6

146.23708 3.4E-05 power_end dummy=65535

146.237114 3.3E-05 irq_handler_entry irq=22 handler=pmu

146.237147 1E-05 sched_wakeup task net_link_workq

146.237157 1.7E-05 irq_handler_exit irq=22 return=handled

146.237174 7E-06 softirq_entry softirq=1 action=TIMER

146.237181 4.1E-05 softirq_exit softirq=1 action=TIMER

146.237222 1.3E-05 sched_switch task swapper

146.237235 1.8E-05 workqueue_execution thread=net_link_workq 40

146.237253 2.3E-05 sched_switch task net_link_workq

146.237276 0.002859 power_start type=1 state=6

146.240135 4.8E-05 power_end dummy=65535

146.240183 5.5E-05 irq_handler_entry irq=0 handler=apbt0

146.240238 1.1E-05 irq_handler_exit irq=0 return=handled

146.240249 2.1E-05 softirq_entry softirq=1 action=TIMER

146.24027 8E-06 sched_wakeup task net_link_workq

146.240278 2.6E-05 softirq_exit softirq=1 action=TIMER

146.240304 0.000238 sched_switch task swapper

146.240542 6.9E-05 sched_switch task net_link_workq

146.240611 0.000399 power_start type=1 state=5013

146.24101 5.1E-05 power_end dummy=65535

146.241061 2.4E-05 power_start type=1 state=6

Tool #3: Event tracer plus pyTimeChart

• pyTimeChart

• Written by Pierre Tardy in Python over wx and Chaco

• Re-implementation of Arjan’s timechart

• UI optimized for fast navigation

• Fast even with big traces

#test.sh

mount -t debugfs none /sys/kernel/debug 2>/dev/null

cd /sys/kernel/debug/tracing

echo 1 > options/global-clock

echo sched:sched_wakeup > set_event

echo sched:sched_switch >> set_event

echo workqueue:workqueue_execution >> set_event

echo power: >> set_event

echo irq: >> set_event

echo > trace

echo 1 > tracing_enabled

sleep 150

echo 0 > tracing_enabled

cat trace > ~/trace.txt

Tool #4: Measure Platform Power

• Software traces (ftrace, event trace) only give a part of the power picture

• Need to measure platform power which is the ultimate goal
• Average power

• Power behavior over time

• Correlation between SW traces and instantaneous power

• Find the cost of transitions at the platform level
• E.g. characterize sleep state parameters

• Discovered that sometimes sleep states are recorded in SW but did not
happen in HW (the small interval ones)
• Aborted early by interrupts

Power Measurement Alternatives

Equipment + Setup Pros Cons

Digital Storage Oscilloscope + Current Probe
+ DC Power Supply

• Inductive coupling
• Useful for other things
(multiple signals, general
troubleshooting)
• High time resolution

• Cost
• Hard to measure
platform average
power due to small
dynamic range (8 bit
ADC).

Monsoon* Power Monitor • Built-in variable power
supply and sense resistor
• Great to compute
average power
• Inexpensive
• Easy to use software

• 200us integrator
sample period

Data Acquisition Equipment
(e.g. National Instruments*, Fluke*)

• Multiple, individual
power rails
• Root-cause issues at
component level

• Cost
• Needs precision
sensing resistors
• Setup time

*Third-party brands and names are the property of their respective owners.

PS DUT

DSO

VBat

GND

M DUT

VBat

GND

PS DUT

DAQ

VBat

GND

Tool #5: Create a model

• Correlate SW with HW

• Find out transition cost

• time

• power

• Estimate power in terms of wake ups per second

• Determine wake-ups per second target

• Derived from power target

Average Power Model

P1

P2

x

t

w

T

power

time

n=3

P1: Power (high)
P2: Power (low)
x: execution time (C0)
t: transition time
T: period of measurement
n: # wake ups in T
w: time between wake-ups

n

T
w

TTT

txnT

where

T

TPTP
Paverage

12

1

2211

)(

 221 PPP
w

tx
Paverage

Paverage

The timer sync problem

• 3 3-sec timers (applications and/or kernel)

• Can wake up the platform every second

• or every 3 seconds

• Depending on relative delay of each timer being programmed

• Impacts power savings of sleep states

• Solution: timer coalescing

• Timer owner explicitly defines a “time slack” property of the timer

Coalescing Timers

Kernel Change Description Status

Arjan van de Ven’s “range”
for highres timers

Apps can specify slack range for their own timers
(i.e. poll/select, futex and nanosleep system calls)
via prctl (per process)

Upstream since Sep 2008

Platform range default
changeable via sysfs

Allow power management policy to override system-
wide range default when under special conditions (e.g.
in a pocket)

To be submitted upstream

Arjan’s “timer slack” for
legacy timers

Kernel code can specify slack explicitly via new
set_timer_slack() API
E.g. before calls to add_timer() or mod_timer()

Proposed Feb 2010, not yet
upstream

Make some kernel timers
deferrable

Only non critical timers
E.g. cache_reap (return free memory to the system)

To be submitted upstream

Timers active during idle use
set_timer_slack()

For critical timers (risk of data loss or security
vulnerability) E.g. memory page write-back, commit
ext3 journal to disk, garbage collectors for network
protocols

To be submitted upstream

Fixes written by Geoff Smith • Remove unnecessary no_hz ticks from the RCU
disposal subsystem
• Look ahead for tick_sched_timer() in
hrtimer_interrupt()

To be submitted upstream

Decreased wake ups 3x,
from 2.4 to 0.8 per second, with just a 1 sec slack

Power Effect of Timer Coalescing

P1

P2

x

t time

m=1

x

t

w

power

time

n=3

Paverage

T

Pcoalesce

P1

P2

T

Δcoalesce

 221 PPP
w

tx
Paverage

12

1

2211

TTT

tmxnT

where

T

TPTP
Pcoalesce

coalesceaveragecoalesce PP

T

PPtmn
coalesce

)()(21

Timer slack coalesces timers, can save power

Timer slack

Benefit of Timer Coalescing

• In some cases coalescing saves power

• Coalescing helps when:

• Big difference between High and Low power

• Transition time significant with respect to execution time, or

• Lots of wake ups get coalesced together

A B C D E F G

Power (high) P1 mw 1000 1000 1000 1000 1000 1000 1000

Power (low) P2 mw 100 500 1 100 100 100 100

Period of measurement T ms 1000 1000 1000 1000 1000 1000 1000

Execution time (C0) x ms 10 10 10 100 1 10 10

transition time t ms 1 1 1 1 1 10 1

wake-ups in T n 5 5 5 5 5 5 50

wake-ups in T, coalesced m 1 1 1 1 1 1 1

time between wake-ups w ms 200 200 200 200 200 200 20

Average Power P_average mw 150 528 56 555 109 190 595

Average Power, coalesced P_coalesce mw 146 526 52 551 105 154 551

Power saving of coalescing Δ_coalesce mw 4 2 4 4 4 36 44

Power saving of coalescing Δ_coalesce % 2% 0% 8% 1% 3% 23% 8%

Platform variables determine impact of coalescing timers

Putting it all together

1. Optimize the SW stack, using powertop

2. Analyze timer behavior using ftrace

3. Further understand kernel behavior with pyTimeChart

4. Measure platform power

5. Correlate traces with platform power to create a model

6. Use model to set a wake-up target

7. If needed, coalesce timers to achieve the wake up target

– Set ranges for user space

– Set slacks for kernel timers

Next Steps

• Try in other SW stacks

• Try in active use cases (as opposed to idle)

• Devise a mechanism to track timer behavior over time

• Single tool

• Quicker turn around

• Integrate /proc/timer_stats with event tracer?

• Perf based?

Additional Info

• Lesswatss.org: Saving power with Linux

http://www.lesswatts.org/

• Petter Larsson’s SW Development Recommendations
for Intel® AtomTM based MID platforms:

http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-
recommendations-for-intel-atom-based-mid-platforms/

• Monsoon Power Monitor

http://www.msoon.com/LabEquipment/PowerMonitor/

• Pierre Tardy’s pyTimechart for ftrace

http://gitorious.org/pytimechart/pages/Home

• Arjan van de Ven’s range capability for hrtimers

http://lwn.net/Articles/296548/

• Arjan van de Ven’s slack for legacy (non high-res) timers

http://lwn.net/Articles/369549

• Contact us

german.monroy@intel.com

http://www.lesswatts.org/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://software.intel.com/en-us/articles/power-efficiency-analysis-and-sw-development-recommendations-for-intel-atom-based-mid-platforms/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://gitorious.org/pytimechart/pages/Home
http://lwn.net/Articles/296548/
http://lwn.net/Articles/369549
mailto:german.monroy@intel.com

Questions?

