
Groking the Linux SPI Subsystem
Embedded Linux Conference 2017

Matt Porter

Obligatory geek
reference
deobfuscation

grok (/gräk/)

verb

to understand intuitively or by empathy, to

establish rapport with.

Overview
● What is SPI?
● SPI Fundamentals
● Linux SPI Concepts
● Linux SPI Use cases

○ Add a device
○ Protocol drivers
○ Controller drivers
○ Userspace drivers

● Linux SPI Performance
● Linux SPI Future

What is SPI?

What is SPI?

● Serial Peripheral Interface
● Motorola
● de facto standard
● master-slave bus
● 4 wire bus

○ except when it’s not
● no maximum clock speed
● “A glorified shift register”

http://wikipedia.org/wiki/Serial_Peripheral_Interface

http://wikipedia.org/wiki/Serial_Peripheral_Interface
http://wikipedia.org/wiki/Serial_Peripheral_Interface

Common uses of SPI
● Flash memory
● ADCs
● Sensors

○ thermocouples, other high data rate devices
● LCD controllers
● Chromium Embedded Controller

SPI fundamentals

SPI Signals
● MOSI - Master Output Slave Input

○ SIMO, SDI, DI, SDA

● MISO - Master Input Slave Output

○ SOMI, SDO, DO, SDA

● SCLK - Serial Clock (Master output)

○ SCK, CLK, SCL

● S̅S̅ - Slave Select (Master output)

● CSn, EN, ENB

SPI Master and Slave

Basic SPI Timing Diagram

SPI Modes
● Modes are composed of two clock characteristics
● CPOL - clock polarity

○ 0 = clock idle state low
○ 1 = clock idle state high

● CPHA - clock phase
○ 0 = data latched falling, output rising
○ 1 = data latched rising, output falling

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

SPI Mode Timing - CPOL 0

SPI Mode Timing - CPOL 1

SPI can be more complicated
● Multiple SPI Slaves

○ One chip select for each slave
● Daisy Chaining

○ Inputs to Outputs
○ Chip Selects

● Dual or Quad SPI (or more lanes)
○ Implemented in high speed SPI Flash devices
○ Instead of one MISO, have N MISOs
○ N times bandwidth of traditional SPI

● 3 Wire (Microwire) SPI
○ Combined MISO/MOSI signal operates in half duplex

Multiple SPI Slaves

SPI Mode Timing - Multiple Slaves

Linux SPI concepts

Linux SPI drivers
● Controller and Protocol drivers only (so far)

○ Controller drivers support the SPI master controller
■ Drive hardware to control clock and chip selects, shift data bits on/off

wire and configure basic SPI characteristics like clock frequency and
mode.

■ e.g. spi-bcm2835aux.c
○ Protocol drivers support the SPI slave specific functionality

■ Based on messages and transfers
■ Relies on controller driver to program SPI master hardware.
■ e.g. MCP3008 ADC

Linux SPI communication
● Communication is broken up into transfers and messages
● Transfers

○ Defines a single operation between master and slave.
○ tx/rx buffer pointers
○ optional chip select behavior after operation
○ optional delay after operation

● Messages
○ Atomic sequence of transfers
○ Fundamental argument to all SPI subsystem read/write APIs.

SPI Messages and Transfers

Linux SPI use cases

Exploring via use cases

● I want to hook up a SPI device on my board that already
has a protocol driver in the kernel.

● I want to write a kernel protocol driver to control my SPI
slave.

● I want to write a kernel controller driver to drive my SPI
master.

● I want to write a userspace protocol driver to control my
SPI slave.

Adding a SPI device to a system
● Know the characteristics of your slave device!

○ Learn to read datasheets
● Three methods

○ Device Tree
■ Ubiquitous

○ Board File
■ Deprecated

○ ACPI
■ Mostly x86

Reading datasheets for SPI details - ST7735

Reading datasheets for SPI details - ST7735

Reading datasheets for SPI details - MCP3008

Reading datasheets for SPI details - MCP3008

MCP3008 via DT - binding
* Microchip Analog to Digital Converter (ADC)

The node for this driver must be a child node of a SPI controller, hence
all mandatory properties described in

 Documentation/devicetree/bindings/spi/spi-bus.txt

must be specified.

Required properties:
 - compatible: Must be one of the following, depending on the
 model:
 ...
 "microchip,mcp3008"
 ...

Examples:
spi_controller {
 mcp3x0x@0 {
 compatible = "mcp3002";
 reg = <0>;
 spi-max-frequency = <1000000>;
 };
};

MCP3008 via DT - driver
static const struct of_device_id mcp320x_dt_ids[] = {
 /* NOTE: The use of compatibles with no vendor prefix is deprecated. */
 {
...
 }, {
 .compatible = "mcp3008",
 .data = &mcp320x_chip_infos[mcp3008],
 }, {

...
 }
};
MODULE_DEVICE_TABLE(of, mcp320x_dt_ids);

...
static struct spi_driver mcp320x_driver = {
 .driver = {
 .name = "mcp320x",
 .of_match_table = of_match_ptr(mcp320x_dt_ids),
 },
 .probe = mcp320x_probe,
 .remove = mcp320x_remove,
 .id_table = mcp320x_id,
};
module_spi_driver(mcp320x_driver);

MCP3008 via DT - DTS overlay fragment

 fragment@1 {
 target = <&spi0>;
 __overlay__ {
 /* needed to avoid dtc warning */
 #address-cells = <1>;
 #size-cells = <0>;
 mcp3x0x@0 {
 compatible = "mcp3008";
 reg = <0>;
 spi-max-frequency = <1000000>;
 };
 };
 };

MCP3008 via board file - C fragment

 static struct spi_board_info my_board_info[] __initdata = {
 {
 .modalias = "mcp320x",
 .max_speed_hz = 4000000,
 .bus_num = 0,
 .chip_select = 0,
 },
 };

 spi_register_board_info(spi_board_info, ARRAY_SIZE(my_board_info));

MCP3008 via ACPI
Scope (_SB.SPI1)
{
 Device (MCP3008)
 {
 Name (_HID, "PRP0001")
 Method (_CRS, 0, Serialized) {
 Name (UBUF, ResourceTemplate () {
 SpiSerialBus (0x0000, PolarityLow, FourWireMode, 0x08,
 ControllerInitiated, 0x003D0900, ClockPolarityLow,
 ClockPhaseFirst, "_SB.SPI1", 0x00, ResourceConsumer)
 })
 Return (UBUF)
 }

 Method (_STA, 0, NotSerialized)
 {
 Return (0xF)
 }
 }
}

Protocol Driver
● Standard LInux driver model
● Instantiate a struct spi_driver

○ .driver =
■ .name = “my_protocol”,
■ .pm = &my_protocol_pm_ops,

○ .probe = my_protocol_probe
○ .remove = my_protocol_remove

● Once it probes, SPI I/O may take place using kernel APIs

Kernel APIs
● spi_async()

○ asynchronous message request
○ callback executed upon message complete
○ can be issued in any context

● spi_sync()
○ synchronous message request
○ may only be issued in a context that can sleep (i.e. not in IRQ context)
○ wrapper around spi_async()

● spi_write()/spi_read()
○ helper functions wrapping spi_sync()

Kernel APIs
● spi_read_flash()

○ Optimized call for SPI flash commands
○ Supports controllers that translate MMIO accesses into standard SPI

flash commands
● spi_message_init()

○ Initialize empty message
● spi_message_add_tail()

○ Add transfers to the message’s transfer list

Controller Driver
● Standard LInux driver model
● Allocate a controller

○ spi_alloc_master()
● Set controller fields and methods (just the basics)

○ mode_bits - flags e.g. SPI_CPOL, SPI_CPHA, SPI_NO_CS,
SPI_CS_HIGH, SPI_RX_QUAD, SPI_LOOP

○ setup() - configure SPI parameters
○ cleanup() - prepare for driver removal
○ transfer_one_message()/transfer_one() - dispatch one msg/transfer

(mutually exclusive)
● Register a controller

○ spi_register_master()

Userspace Driver - spidev
● Primarily for development and test
● DT binding requires use of a supported compatible string or add a new one if

no kernel driver exists for the device
○ rohm,dh2228fv
○ lineartechnology,ltc2488
○ ge,achc

● ACPI binding requires use of a dummy device ID
○ SPT0001
○ SPT0002
○ SPT0003

Userspace Driver - spidev
● Slave devices bound to the spidev driver yield:

○ /sys/class/spidev/spidev[bus].[cs]
○ /dev/spidev[bus].[cs]

● Character device
○ open()/close()
○ read()/write() are half duplex
○ ioctl()

■ SPI_IOC_MESSAGE - raw messages, full duplex and chip select
control

■ SPI_IOC_[RD|WR]_* - set SPI parameters

Userspace Help
● Docs

○ Documentation/spi/spidev
● Examples

○ tools/spi/spidev_fdx.c
○ tools/spi/spidev_test.c

● Helper libaries
○ https://github.com/jackmitch/libsoc
○ https://github.com/doceme/py-spidev

https://github.com/jackmitch/libsoc
https://github.com/jackmitch/libsoc
https://github.com/doceme/py-spidev
https://github.com/doceme/py-spidev

Linux SPI
Performance

Performance considerations
● Be aware of underlying DMA engine or SPI controller driver behavior.

○ e.g. OMAP McSPI hardcoded to PIO up to 160 byte transfer
● sync versus async API behavior

○ async may be suitable for higher bandwidth where latency is not a
concern (some network drivers)

○ sync will attempt to execute in caller context (as of 4.x kernel) avoiding
sleep and reducing latency

Performance considerations

 * All SPI transfers start with the relevant chipselect active. Normally
 * it stays selected until after the last transfer in a message. Drivers
 * can affect the chipselect signal using cs_change.
 *
 * (i) If the transfer isn't the last one in the message, this flag is
 * used to make the chipselect briefly go inactive in the middle of the
 * message. Toggling chipselect in this way may be needed to terminate
 * a chip command, letting a single spi_message perform all of group of
 * chip transactions together.
 *
 * (ii) When the transfer is the last one in the message, the chip may
 * stay selected until the next transfer. On multi-device SPI busses
 * with nothing blocking messages going to other devices, this is just
 * a performance hint; starting a message to another device deselects
 * this one. But in other cases, this can be used to ensure correctness.
 * Some devices need protocol transactions to be built from a series of
 * spi_message submissions, where the content of one message is determined
 * by the results of previous messages and where the whole transaction
 * ends when the chipselect goes inactive.

● Use cs_change wisely. Note the details from include/linux/spi/spi.h:

Performance tools
● Debug/visibility tools critical to any hardware focused work
● Logic analyzer

○ http://elinux.org/Logic_Analyzers
○ https://sigrok.org/wiki/Supported_hardware#Logic_analyzers

● drivers/spi/spi-loopback-test
● SPI subsystem statistics

○ /sys/class/spi_master/spiB/spiB.C/statistics
■ messages, transfers, errors, timedout
■ spi_sync, spi_sync_immediate, spi_async
■ transfer_bytes_histo_*

http://elinux.org/Logic_Analyzers
http://elinux.org/Logic_Analyzers
https://sigrok.org/wiki/Supported_hardware#Logic_analyzers
https://sigrok.org/wiki/Supported_hardware#Logic_analyzers

Linux SPI Future

Slave Support
● Hard real time issues on Linux due to full duplex nature of SPI.
● Useful if considering limited use cases

○ Pre-existing responses
○ Commands sent to slave

● RFC v2 patch series
○ https://lkml.org/lkml/2016/9/12/1065

● Registering a controller works just like a master
○ spi_alloc_slave()

https://lkml.org/lkml/2016/9/12/1065
https://lkml.org/lkml/2016/9/12/1065

Slave Support
● /sys/class/spi_slave/spiB/slave for each slave controller
● slave protocol drivers can be bound via sysfs

○ echo slave-foo > /sys/class/spi_slave/spi3/slave
● Two slave protocol drivers provided as an example

○ spi-slave-time (provides latest uptime to master)
○ spi-slave-system-control (power off, reboot, halt system)

Questions?

