# **Exploiting On-Chip Memories In Linux Applications**

Will Newton, Imagination Technologies

## What's wrong with SDRAM?



## 64 cycles is optimistic

RAM clock often slower than core

SoC fabric and arbiter delays

SDRAM controller bursting delays

TLB miss stalls

## It's not just latency

Memory bus bandwidth

Bus contention can affect other cores

Memory bus power consumption

Non-deterministic if you're doing RT

#### What solutions are available?



#### **Example META SoC**

Hardware multi-threaded DSP core

L1 cache - 16k code, 16k data

Core memory - 64k code, 64k data

Internal memory - 384k general purpose

# Example META SoC



#### Using core memories

Ideally we would like usage to be transparent

Fixed addresses make this difficult

#### Core memory: Executables

Linker script allows placement of sections
#define \_\_section(S) \_\_attribute\_\_((\_\_section\_\_(#S)))

#define \_\_core\_text \_\_section(.core\_text)
#define \_\_core\_data \_\_section(.core\_data)

static int \_\_core\_data mydata;

int \_\_core\_text myfunction(int a);

elf map overridden in the kernel

#### Core memory: Shared libraries

Cannot mix core and MMU in one object

Whole shared object can be placed in core

Only useful for small objects

#### Core memory: Dynamic allocation

System call API to allocate and free

Can replace specific malloc/free calls

Allows kernel to reserve areas

#### Core memory: In practice

Not easy to get big speedups

Cache manages small, frequently accessed items well

Beware long branches

Improved tremor decode speed by 11%

## Using internal memory

Linux supports cpu-less NUMA nodes

numactl

set\_mempolicy(2)

mbind(2)

#### Internal memory: numactl

Tool to set NUMA policy of an application

numactl --preferred=1 ls

Does not build easily with uClibc

Too coarse-grained for many situations

#### Internal memory: set\_mempolicy(2)

Sets the memory policy of the current process

Does not move existing pages

Memory policy can be set multiple times

#### Internal memory: mbind(2)

Sets the memory policy for an address range

Overrides policy set by set\_mempolicy(2)

Capable of moving pages between nodes

#### Internal memory: In practice

No nice way to implement malloc\_from\_node(2)

Moving pages can be costly, mbind(2) should be used with precision

Improved tremor decode speed by 8%

# Finding hotspots

Code profiling (gprof, oprofile, perf)

Cache profiling (oprofile, perf)

Emulator

Simulator

#### Where's the code?

Source code for released products

http://www.pure.com/gpl

## Questions?

will.newton@imgtec.com