
1Porting Android

What else can you do with Android?

Porting to custom hardware

Chris Simmonds

Embedded Linux Conference Europe 2010

Copyright © 2010, 2net Limited

2Porting Android

Overview
● Porting Android to custom hardware

● Creating an Android kernel
● Building the Android Open Source
● Device support: input, display, network
● Initialising services
● Configuring ...

3Porting Android

Steps to implement Android

● Get a kernel with Android patches
● Build the Android user space
● Customise

● Boot sequence: services
● Networking: Ethernet
● Input devices: touchscreen & user buttons

● Write application – in Java
● Probably have to write some native (C/C++) code

4Porting Android

Android Open Source Project
● Aka AOSP. Home page:

● http://source.android.com

● A multitude of git trees:
● http://android.git.kernel.org

● Use repo tool and a manifest file to download
and sync with a sub-set of the trees

● Note: most development is done privately and
then released to the AOSP later
● AOSP trees lag the code available to OHA members

http://source.android.com/
http://android.git.kernel.org/

5Porting Android

Chip support
● armv5te and armv7a out-of-the-box
● MIPS, PPC, x86, SH ports have been done
● SoC support (kernel and drivers) from vendors

including
● Freescale i.MX, TI OMAP

● Custom board level support
● In most cases you will have to create your own

Android BSP
● Requires merging Android kernel patches into your

own kernel tree

6Porting Android

Android kernel repository

● http://android.git.kernel.org/ is the main repository for the
AOSP

● There are several kernel trees there: the main one is
kernel/common.git. It has several heads
● android-2.6.35
● android-2.6.32
● android-goldfish-2.6.29
● android-2.6.29
● android-goldfish-2.6.27
● android-2.6.27
● android-2.6.25

7Porting Android

Android kernel additions

● Wakelocks & Power management

● Binder
● corba-like IPC, replaces SYSV and POSIX IPC

● ashmem
● Android shared memory: replaces SYSV & POSIX shared mem

● Apps use ioctl and mmap on /dev/ashmem

● pmem
● Process memory allocator

● logger
● Ring buffers for logging: used by logcat application

● oom handling
● "better" oom hander

● Other bibs and bobs...

8Porting Android

Notes about merging Android kernel
● Android patches not in mainline

● Some changes were in drivers/staging/android for
kernels up to 2.6.32

● Merging - the big picture
● clone Android kernel
● create a patch between Android and mainline
● apply the patch to your kernel & resolve the errors

● Details...
● read section 4 in the handout

9Porting Android

AOSP: repo
● Everything except the kernel is available in the

AOSP
● repo is a tool to synchronise the git trees you

need
● Obtain from http://android.git.kernel.org/repo
● Initialise the repository
● The trees to clone are defined in a manifest

– an xml file

10Porting Android

Example of using repo

mkdir ~/myandroid
cd myandroid
repo init -u git://android.git.kernel.org/platform/manifest.git
repo sync

● Using the default manifest
● note: takes a long time & downloads several GiB of

code

11Porting Android

Building everything
● Next, build it like this

● the final 'm' is an alias for 'make' (!)
● this also takes a long time and consumes much disk

space

cd myandroid
export JAVA_HOME=$HOME/jdk1.5.0_22
PATH=$JAVA_HOME/bin:$PATH
. build/envsetup.sh
m

12Porting Android

What you get
● Tools (e.g. adb ,emulator) in

● myandroid/out/host/linux-x86

● Target file images (system.img, userdata.img,
ramdisk.img) in
● myandroid/out/target/product/generic

● Individual target run-time files in
● myandroid/out/target/product/generic/root/

13Porting Android

Building the sdk
● Build your own sdk with

m sdk

● The output is in

myandroid/out/host/linux-x86/android-
sdk_eng.<user name>_linux-x86/

14Porting Android

Default file systems

root YAFFS2 ro

system YAFFS2 ro

data YAFFS2 rw

/

/system

/data

● This is the default layout in NAND flash memory
● using the YAFFS2 file system format

● Only /data is writeable: this is where your apps
and settings are stored

15Porting Android

More about booting: init.rc
● The first program to run is /init
● Creates device nodes, starts services

● A bit like a combination of ordinary init and udev

● Controlled by script in /init.rc:

on init
sysclktz 0
loglevel 3

setup the global environment
 export PATH
/sbin:/system/sbin:/system/bin:/system/xbin
 export LD_LIBRARY_PATH /system/lib

...

16Porting Android

Android init language: actions

An action is what to do when a trigger is received.
Actions take the form of:

on <trigger>
 <command>
 <command>
 <command>

For example the init trigger is issued when the system starts,
so init.rc begins with this action

on init

17Porting Android

Android init language: services

An service is usually a daemon process that is started
Services take the form of:

service <name> <pathname> [<argument>]*
 <option>
 <option>

The service class is set by class <class_name>. If there is no
class it defaults to 'default'.

You start services of a certain class with class_start, so this
command at the end of the on init action starts all the default
services

class_start default

18Porting Android

Example service in init.rc

Daemon processes to be run by init.
##
service console /system/bin/sh
 console

adbd is controlled by the persist.service.adb.enable system property
service adbd /sbin/adbd
 disabled

adbd on at boot in emulator
on property:ro.kernel.qemu=1
 start adbd

on property:persist.service.adb.enable=1
 start adbd

on property:persist.service.adb.enable=0
 stop adbd

adb is disabled by default

enabled if running emulator
or persist.service.adb.enable=1
is set in /default.prop

19Porting Android

Display devices
● Uses Linux frame buffer device
● Screen size limited in framework classes

● 1024x768...
● Gingerbread rumoured to support 720p HD

(1280x760)

● 2D acceleration (optional)
● Custom library 'SGL'

● 3D acceleration (optional)
● OpenGL ES 1.0

20Porting Android

Input devices - buttons
● Uses Linux input device framework interface

(/dev/input/event*)
● So you need to write a normal Linux driver that

creates input events

● The default key mapping is in
/system/usr/keylayout/qwerty.kl

● A key mapping may be qualified with WAKE
● Pressing this key while the device is asleep

will wake it up

21Porting Android

Input devices - touchscreen

● Also uses Linux input device framework
● So, any Linux touch screen driver will work
● Note: does not use tslib. Filtering done in Android

framework

● Input classes smart enough to display a soft
keyboard when needed if there is no real
keyboard

● If you want screen, use ts_calibrator
● Source is in the AOSP tree

22Porting Android

Summary
● There is quite a lot to know if you are porting

Android to custom hardware
● But not more than other embedded Linux distros

● All of the source is open and easily available
● The sort of customisations you can make

without much effort include
● changing the boot-up script, init.rc
● adding drivers for input devices
● adding drivers for accelerated graphics

23Porting Android

Links
● Relevant Android developer forums

● http://groups.google.com/group/android-porting
● http://groups.google.com/group/android-kernel

● Inner Penguin blog at
● http://www.embedded-linux.co.uk

● 2net web site
● http://www.2net.co.uk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

