
BoF: Secure OTA Collaboration
Ricardo Salveti, Principal Engineer

Alan Bennett, VP Engineering
Monday, Oct 23 2017 - ELC-E

https://goo.gl/1EGWkr

https://goo.gl/1EGWkr

Background
Open Source Foundries - a new Startup productization of what we did @ Linaro
 - Minimal, secure, open source, updateable ‘easy’ microPlatforms
 - Ricardo Salveti, Tyler Baker, Marti Bolivar, Milo Casagrande,
 Michael Scott, Andy Doan
 - Recent activity: LAVA-docker, KernelCI, Jobserv, OSLight, Anti-patterns,
 Zephyr LWM2M/FOTA Framework, OTA Collaboration / Security design

Now, let’s get technical

https://github.com/kernelci/lava-docker
https://kernelci.org
http://github.com/opensourcefoundries/jobserv
https://github.com/oslight
https://lwn.net/Articles/733512/
https://www.slideshare.net/linaroorg/new-zephyr-features-lwm2m-fota-framework-sfo17113
http://events.linuxfoundation.org/sites/events/files/slides/Automotive%20Linux%20Conference%20-%20Collaboratively%20building%20a%20platform%20for%20secure%20OTA_0.pdf

Goals of the BoF
● Early analysis pointed us to many ‘kinda-different, but open’ solutions
● Analyzed OTA systems, summarize, propose some collaboration steps

○ Security is hard, best to share open and common solutions when possible

● If we miss or get things wrong, speak up, don’t let this be a one-way talk

Not going to be covered in this BoF:

● Comparison between current major OTA solutions
○ Extensively covered at previous conferences (check references for the presentations as we

only have 45 minutes!)

● Traditional package-based systems (rpm, deb, etc)

IoT Software Update Requirements
● Atomic updates

○ Stateless system

● Capable of updating bootloader, kernel, configuration and the rootfs
● Fail-safe, rollback previous software state

○ Boot / update monitoring (watchdog), with boot confirmation

● Secure download / verification of the image
● Easy to use / consume without vendor lock-in

○ Ideally supported by OpenEmbedded (external layers)

● Trusted boot and execution of software update in a trusted environment
○ Leveraging platform’s hardware TPM and/or TEE features

Block-based Update Systems (1/2)

● Symmetric and/or Asymmetric
● Mostly dual bank (A/B) scenarios
● RW data in a separated partition
● Bootloader dependency
● Full rootfs update

○ Reboot required

● Safe and reliable process
○ For both update and rollback

● Easy to manage at the server side
● Image verification (key / cert)
● OE/Yocto layer usually available

Bootloader

Rootfs A + Kernel
(active)

Rootfs B + Kernel
(inactive)

User Data

Block-Based Update Systems (2/2)
Main implementations:

● SWUpdate (GPLv2): https://github.com/sbabic/swupdate
● Mender (Apache v2.0): https://mender.io
● RAUC (LGPLv2.1): https://github.com/rauc/rauc
● ResinOS (Apache v2.0): https://resinos.io

Some more flexible than the others, some also offering Open Source server-side
implementations (e.g. swupdate with hawkbit / mender).

https://github.com/sbabic/swupdate
https://mender.io
https://github.com/rauc/rauc
https://resinos.io

File-based Update Systems (1/2)

● Updates to individual files / dirs
● Reboot may be optional (swupd)
● Simpler partition layout
● Fast download / update process

○ Worst case: full rootfs update

● Bootloader dependency
● Safe and reliable process

○ For both update and rollback

● Server side more complex
● Image verification (key / cert)
● OE/Yocto layer usually available

Bootloader

OSTree Rootfs + Kernel

User Data

File-based Update Systems (2/2)
Main implementations:

● OSTree (LGPLv2): https://github.com/ostreedev/ostree
○ "Git for operating system binaries"
○ Used by several projects:

■ Gnome Continuous: https://wiki.gnome.org/Projects/GnomeContinuous
■ Project Atomic: https://github.com/projectatomic/rpm-ostree
■ QtOTA: http://doc.qt.io/QtOTA/
■ flatpak: https://github.com/flatpak/flatpak
■ Automotive Grade Linux: https://github.com/advancedtelematic/meta-updater
■ Endless OS: https://github.com/endlessm/eos-updater

● Swup (GPLv2): https://github.com/clearlinux/swupd-client

https://github.com/ostreedev/ostree
https://wiki.gnome.org/Projects/GnomeContinuous
https://github.com/projectatomic/rpm-ostree
http://doc.qt.io/QtOTA/
https://github.com/flatpak/flatpak
https://github.com/advancedtelematic/meta-updater
https://github.com/endlessm/eos-updater
https://github.com/clearlinux/swupd-client

Problems Identified
● Secure / verified boot story still problematic

○ Usually hardware specific

● Trusted execution environment not widely used
○ Trusted execution of the OTA client (image update / swap)
○ Runtime integrity check
○ Trusted storage / eMMC

● Boot firmware updates
● Several OE Layers duplicating board specific logic

○ Mostly around bootloader patching and scripting

● Lack of threat models
○ Antipatterns in IoT: https://lwn.net/Articles/733512/

● Secure Software Distribution

https://lwn.net/Articles/733512/

Secure Software Distribution
● Main problem found with the current OTA systems:

○ HTTPS + Crypto (e.g. GnuPG) is not necessarily enough for a fully secure solution
○ System still considerably vulnerable against several other attacks:

■ Freeze, endless data, rollback, wrong software installation, malicious mirrors

● The Update Framework Specification (TUF)
○ Metadata for target files
○ Key features: multiple roles, data freshness, signed collection, key hierarchy, transparent key

rotation and threshold (targets) signing
○ Projects implementing TUF: Docker (Notary), CoreOS, Python's pip, Ruby's gems

● AGL / ATS ahead of the game, TUF / Uptane implementation
○ Uptane is based on TUF but extended to better cover the automotive requirements

https://github.com/theupdateframework/specification/blob/master/tuf-spec.md

Suggestions for Collaboration
● Guidelines / reference implementation for secure boot
● Trusted execution environment (bootloader update, integrity checks)
● Bootloader rootfs image update process (image swap, boot count)
● Boot firmware update process
● Integration with different Open Source management servers

○ Mender support in SWUpdate?

● Watchdog best practices / boot image validation
● Secure software distribution (TUF) implementation

https://elinux.org/Secure_OTA_Update ?

https://elinux.org/Secure_OTA_Update

References
● Yocto System Update Comparison Wiki
● Identifying secure firmware update mechanisms and open source options for

embedded Linux devices (Alex Gonzalez - Digi International)
● [RFC] Device-side support for software update in AGL (Konsulko Group / ATS)
● Comparison of Linux Software Update Technologies (Matt Porter, Konsulko Group)
● Open Software Updates for IoT (Phil Wise, Advanced Telematic Systems)
● How we added software updates to AGL (Phil Wise, Advanced Telematic Systems)
● How do you update your embedded Linux devices? (Daniel / Keijiro, Toshiba)
● Secure boot Secure software update (Yannick Gicquel, iot.bzh)
● Surviving in the wilderness integrity protection and system update (Patrick, Intel)
● Secure Software Distribution in an Adversarial World (Diogo Mónica, Docker)
● The Update Framework Specification

https://wiki.yoctoproject.org/wiki/System_Update
http://www.embedded-computing.com/dev-tools-and-os/identifying-secure-firmware-update-mechanisms-for-embedded-linux-devices-and-open-source-options
http://www.embedded-computing.com/dev-tools-and-os/identifying-secure-firmware-update-mechanisms-for-embedded-linux-devices-and-open-source-options
https://lists.linuxfoundation.org/pipermail/automotive-discussions/2016-May/002061.html
http://events.linuxfoundation.org/sites/events/files/slides/Comparison%20of%20Linux%20Software%20Update%20Technologies_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/Open%20Software%20Updates%20for%20IoT.pdf
https://elinux.org/images/f/f3/How_we_added_software_updates_to_AGL.pdf
http://events.linuxfoundation.org/sites/events/files/slides/linuxcon-japan-2016-softwre-updates-sangorrin.pdf
http://iot.bzh/download/public/2016/publications/SecureBoot-SecureSoftwareUpdates.pdf
https://elinux.org/images/2/2e/2017_ELC_Integrity_System_Update.pdf
https://www.slideshare.net/diogomonica/dot-security
https://theupdateframework.github.io/

Relevant Talks this week!
● Tuesday, October 24 • 11:45 - 12:25 - Protecting Your System from the

Scum of the Universe - Gilad Ben-Yossef, Arm Holdings
● Tuesday, October 24 • 14:05 - 14:45 - Orchestrated Android-Style System

Upgrades for Embedded Linux - Diego Rondini, Kynetics
● Wednesday, October 25 • 15:05 - 15:45 - Updating an Embedded System

with SWUpdate Framework - Stefano Babic, DENX Software Engineering
Gmbh

https://osseu17.sched.com/event/ByYB/protecting-your-system-from-the-scum-of-the-universe-gilad-ben-yossef-arm-holdings
https://osseu17.sched.com/event/ByYB/protecting-your-system-from-the-scum-of-the-universe-gilad-ben-yossef-arm-holdings
https://osseu17.sched.com/event/ByYE/orchestrated-android-style-system-upgrades-for-embedded-linux-diego-rondini-kynetics
https://osseu17.sched.com/event/ByYE/orchestrated-android-style-system-upgrades-for-embedded-linux-diego-rondini-kynetics
https://osseu17.sched.com/event/ByYm/updating-an-embedded-system-with-swupdate-framework-stefano-babic-denx-software-engineering-gmbh
https://osseu17.sched.com/event/ByYm/updating-an-embedded-system-with-swupdate-framework-stefano-babic-denx-software-engineering-gmbh
https://osseu17.sched.com/event/ByYm/updating-an-embedded-system-with-swupdate-framework-stefano-babic-denx-software-engineering-gmbh

Summary
Thanks!

OSTree basics: sysroot

Open Source Updates for IoT - ATS

http://events.linuxfoundation.org/sites/events/files/slides/Open%20Software%20Updates%20for%20IoT.pdf

Design principles for a repository

ε

timestamp

metadata images
signs metadata for

signs root keys for

delegates images toroot

snapshot targets

A1

BC

A.img

C.img

signs for images

A.*

B.*, C.*

*.img A2

B.img

Design principles:
1. Separation of duties.
2. Threshold signatures.
3. Explicit and implicit revocation of keys.
4. Minimized risk through use of offline keys.

SOTA #5: Uptane Design Overview

https://docs.google.com/presentation/d/1R3jSDcqbqUIwJgbOLOKwHReoy2wnj8GrXlKCdcLNXAA/edit#slide=id.g179d0311ce_0_20

Separation of duties

ε

timestamp

metadata images
signs metadata for

signs root keys for

delegates images toroot

snapshot targets

A1

BC

A.img

C.img

signs for images

A.*

B.*, C.*

*.img A2

B.img

Design principles:
1. Separation of duties.

○ Sign different types of metadata using different keys.
○ Metadata about images (self-contained archives of code+data

for ECUs), or other metadata files.

SOTA #5: Uptane Design Overview

https://docs.google.com/presentation/d/1R3jSDcqbqUIwJgbOLOKwHReoy2wnj8GrXlKCdcLNXAA/edit#slide=id.g179d0311ce_0_20

Threshold signatures

ε

timestamp

metadata images
signs metadata for

signs root keys for

delegates images toroot

snapshot targets

A1

BC

A.img

C.img

signs for images

A.*

B.*, C.*

*.img A2

B.img

Design principles:
1. Separation of duties.
2. Threshold signatures.

¾

SOTA #5: Uptane Design Overview

https://docs.google.com/presentation/d/1R3jSDcqbqUIwJgbOLOKwHReoy2wnj8GrXlKCdcLNXAA/edit#slide=id.g179d0311ce_0_20

Minimizing risk with offline keys

ε

timestamp

metadata images
signs metadata for

signs root keys for

delegates images toroot

snapshot targets

A1

BC

A.img

C.img

signs for images

A.*

B.*, C.*

*.img A2

B.img

Design principles:
1. Separation of duties.
2. Threshold signatures.
3. Explicit and implicit revocation of keys.
4. Minimized risk through use of offline keys.

SOTA #5: Uptane Design Overview

https://docs.google.com/presentation/d/1R3jSDcqbqUIwJgbOLOKwHReoy2wnj8GrXlKCdcLNXAA/edit#slide=id.g179d0311ce_0_20

Explicit & implicit revocation of keys

ε

timestamp

metadata images
signs metadata for

signs root keys for

delegates images toroot

snapshot targets

A1

BC

A.img

C.img

signs for images

A.*

B.*, C.*

*.img A2

B.img

Design principles:
1. Separation of duties.
2. Threshold signatures.
3. Explicit and implicit revocation of keys.

SOTA #5: Uptane Design Overview

https://docs.google.com/presentation/d/1R3jSDcqbqUIwJgbOLOKwHReoy2wnj8GrXlKCdcLNXAA/edit#slide=id.g179d0311ce_0_20

