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Function

IP IP & Systems& Systems

Synopsys & ARC Introduction

ARC 600/700 Families

Audio Codecs

Video Codecs

Sonic Focus Software

Configurable Cores
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Physics

VerificationVerificationDesignDesign

ManufacturingManufacturing



DesignWare ARC Processors 
A History of Customer Success

• #2 supplier of embedded 32-bit Processor IP cores
– 160+ licensees (7 of the top 10 semis) 
– >550 million ARC-based™ chips shipping annually
– Thousands of successful customer tapeouts

• Complete Multimedia Solutions
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• Complete Multimedia Solutions

• Configurable & Extendible Technologies to meet your needs

• Full suite of software & hardware development tools

• The Most Size and Power Efficient Cores!
• 1.52 DMIPS/MHz, 0.13mw/MHz, 11.7 DMIPS/mW



Some example products …

• 2.5" 1080p FULLHD Player, MP4 Player
• 3.5" SATA 1080p FULL HD Network Media Player 

(based on AMLogic chipset )
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• DVR, STB players
(based on ViXS chipset)
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• Targeting host and application processors: up to 1.2GHz at 40G 
delivering 1800 DMIPS

• 7 stage scalar, interlocked pipeline, with Dynamic Branch Prediction

(with 512 entry branch target address cache)

• 64KB I-cache/D-cache

DW ARC 7xx – Configurable & Extendable
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• MMU with 128 entry 2-way set associative main TLB

• Configurable bus masters (BVCI/AHB/AXI, 32/64 bit)

• “Direct Memory Interface” for instruction and data CCMs

• ARCompact ISA : hybrid 16/32 bit instructions for minimal code size

• DSP extensions and customs instructions: customers can define 
their own application specific instructions to accelerate



• Toolchain
• C runtime library
• Kernel
• Userland packages

Overview of porting steps
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• Userland packages
• Distribution / delivery
• The return path



Toolchain

• Metaware toolchain
– Proven technology;
– Adapted to ARC architecture: 

makes use of most ARC-
specific enhancements;

– Not very suitable for building 
Linux, because of usage of 
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Linux, because of usage of 
GCC extensions:

switch (major_idx) {
case 0:        return SCSI_DISK0_MAJOR; 
case 1 ... 7:  return SCSI_DISK1_MAJOR + major_idx - 1; 
case 8 ... 15: return SCSI_DISK8_MAJOR + major_idx - 8; 
default:       BUG(); 

return 0;
}



• Machine description:
– gcc/config/arc/arc.md : contains templates 

that convert from an intermediate 
representation to actual ARC assembly.

– gcc/config/arc/arc.c : the description often 
uses C functions to assist in generating ASM.

– gcc/config/arc/ieee-754 : handlers for 
software floating point

• Optimization/tuning:

Toolchain : porting GCC
Parser

Genericizer

Gimplifier

Tree SSA 
Optimizer

RTL 

C

Machine 
dependent 

code generator

Machine 
description
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gcc

• Optimization/tuning:
– MilePost : machine learning and iterative 

feedback mechanism for finding the optimum 
tuning options for a specific architecture

• Key issues:
– Correctness of code, performance

RTL 
generator

Optimizer

Code 
Generator

ASM
binutils

gcc as ldC asm obj exe



• Brcc instruction: compare and branch:

Example

– Limited range, when out of range 
needs to be split into cmp and bcc

breq.d r1, 0, .Label
sub.ne r2, r2, 1

cmp r1, 0
beq.d r1, 0, .Label
sub.ne r2, r2, 1

Conditional instruction fails 
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Conditional instruction fails 
because of extra cmp



• Adding support for ARC in the assembler (gas)
• Adding support for ARC in ld

– Adding linker scripts

• But also:
– BFD library: cpu-arc.c, elf32-arc.c
– Opcode library: ARC disassembler, opcode generator

• 16/32 bits instructions:
– Mixed endianness;

Toolchain : porting binutils

gcc as ldC asm obj exe

bfd libar
nm

readelf gprof

objcopy
opcode lib
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– Mixed endianness;
– Unaligned relocations

binutils

gcc as ldC asm obj exe

31 0

0x0000

0x0004

0x0008

0x000c

0x0010

Instruction A

Instruction B Instruction C

Instruction D Instruction E (msb)

Instruction E (lsb) Instruction F

Instruction G



• Just compile and go… not:-(
• C-runtime entry code
• Architecture-specific header files
• Dynamic linker, difference between code/data

– Relocatable code, little/big endian 16/32 bit

• System call handlers

Runtime libraries: uClibc
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• System call handlers
• Hand-optimized memcpy, strcpy, etc.
• Hand-written implementations for longjmp, but also some 

system calls like clone()
• Handlers for atomic operations
• TLS



The kernel

MMU code

Linker scriptTLB 
exception 
handler

Interrupt 
handler

Branch delay 
slots

Clock events

Various system calls 

Generic IRQ framework

Generic semaphores
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slots

Cache 
functions

Context 
switching 

code

put_user, 
get_user, etc.

Header files

Reuse of generic kernel 
components

Architecture specific 
changes

Various system calls 
and kernel internal 

functions

Generic drivers for IDE, 
PCI, etc.



Example (branch delay slot):

0x00: b.d 0x30
0x04: ld     r0, [r1]
...
0x30: 

[r1] not mapped 
yet, so exception 

triggered

Auxiliary registers set to 
track exception return 
address (0x04), and 
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0x30: address (0x04), and 
branch address (0x30).

What happens if we get a task switch now??

Make sure that complete processor 
status is saved and restored…



• Alignment issues, hidden assumptions (i.e. 8KB page size)

• Thread local storage � emulation
• Linking sometimes needs tuning with large objects
• Architecture-specific code in userland packages
• Example: Webkit: knows about ARM, but not about ARC

Userland
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• Example: Webkit: knows about ARM, but not about ARC
// FIXME: perhaps we should have a more abstract macro that indicates when
// going 4 bytes at a time is unsafe

#if CPU(ARM) || CPU(SH4)
const UChar* stringCharacters = string->characters();
for ( unsigned i = 0; i != length; ++i) {

if (*stringCharacters++ != *characters++)
return false;

}
return true;

#else
/* Do it 4-bytes-at-a-time on architectures where it's safe */

const uint32_t* stringCharacters = reinterpret_cast<const uint32_t*>(string->characters());
const uint32_t* bufferCharacters = reinterpret_cast<const uint32_t*>(characters);



• Customers expect more than kernel + toolchain
• Many (all) customers have their own preference

– What flavor to choose?

• There’s a lot to leverage from OSS community

Distribution / delivery
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• Started with minimal approach:
– Kernel, toolchain and minimal Root FS on SourceForge;
– Supporting customers in porting their libraries.

• Will be extended over time
– Extend distribution by adding packages and libraries



• Being a good citizen… or sound business sense?
– ARC GCC 2.3 and ARC Linux 1.3 (based on Linux 

2.6.30 and GCC 4.2.1) available at: 
http://sourceforge.net/projects/arc-linux/

The return path
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• Next steps:
– Get ARC Linux merged into Linux kernel
– Learn to play according the OSS community rules



• Linux audio/video solutions, including highly 
optimized codecs
– ARC can reduce porting effort because of the single 

processor architecture for both host (ARC Linux) and 
DSP (ARC Media subsystems).

Future work
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DSP (ARC Media subsystems).

• Mainlining Linux kernel and tools



• ARC and Linux work together and form a nice alternative 
with size, power and configurability benefits

• In general: the further down the chain you get, the easier it 
gets to port it;

• However, core-specific optimizations and assumptions are 
often well hidden and require some debugging/porting effort;

Conclusions
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often well hidden and require some debugging/porting effort;

• Portability is for people who cannot write new 
programs; verdict: busted/plausible/confirmed
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