
Experience with GNU, LINUX,
and other Open Source on ARC

Processors
Portability Is For

1

Portability Is For
People Who Cannot
Write New Programs

ELC-Europe 2010, Cambridge, October 27/28
Mischa Jonker, Ruud Derwig

Function

IP IP & Systems& Systems

Synopsys & ARC Introduction

ARC 600/700 Families

Audio Codecs

Video Codecs

Sonic Focus Software

Configurable Cores

2

Physics

VerificationVerificationDesignDesign

ManufacturingManufacturing

DesignWare ARC Processors
A History of Customer Success

• #2 supplier of embedded 32-bit Processor IP cores
– 160+ licensees (7 of the top 10 semis)
– >550 million ARC-based™ chips shipping annually
– Thousands of successful customer tapeouts

• Complete Multimedia Solutions

3

• Complete Multimedia Solutions

• Configurable & Extendible Technologies to meet your needs

• Full suite of software & hardware development tools

• The Most Size and Power Efficient Cores!
• 1.52 DMIPS/MHz, 0.13mw/MHz, 11.7 DMIPS/mW

Some example products …

• 2.5" 1080p FULLHD Player, MP4 Player
• 3.5" SATA 1080p FULL HD Network Media Player

(based on AMLogic chipset)

4

• DVR, STB players
(based on ViXS chipset)

Co-Proc/
User Logic

Co-Proc/
User Logic

r59

DSP ALU
32x16, Dual

C
hi

p
B

us
 B

V
C

I,
A

H
B

, A
X

I,
A

R
C

 L
eg

ac
y

M
em

or
y

C
on

tr
ol

le
r

Instr
CacheB

rid
ge

Control & Status
Registers RAM

User Logic FIFOs

Timer 0
Timer 1

Instr

XY Memory Bank

Address
Generation Units
Modulo, Circular,

Bit Reverse

YX

_u0 _u1

_u0X/Y Ptr 2 _nu
_u1

_u0X/Y Ptr 1 _nu
_u1

_u0X/Y Ptr 0 _nu
_u1

X/Y Ptr 3 _nuDMA
B

rid
ge

DW ARC 7xx – Configurable & Extendable

User Register Extensions

5

CPU Island

Data

Core
Registers ALU

I/F

LD/ST

User Custom
Instructions

r31

r0

r32

7 Stage RISC
Pipeline

32 bit ALU

CC

Ex Core/Aux Ex Core/Aux

32x16, Dual
16x16, 32x32 MAC

Base ARC

Extensions

User Logic DSP Instructions

Configurable I$/D$ & Bus

O
n-

C
hi

p
B

us
 B

V
C

I,
A

H
B

, A
X

I,
A

R
C

 L
eg

ac
y

M
em

or
y

C
on

tr
ol

le
r

Instruction

32x32
Multiply

MMU

B
rid

ge Data
Cache

User Logic FIFOs

32 bit addr

32 bit dataA
ux

 S
pa

ce

Co-Proc/
User Logic

Instr
CCM

Data
CCM

Floating Point OptionFPX

XY Memory OptionXY

FP Extensions
Wide User Custom

Extensions

• Targeting host and application processors: up to 1.2GHz at 40G
delivering 1800 DMIPS

• 7 stage scalar, interlocked pipeline, with Dynamic Branch Prediction

(with 512 entry branch target address cache)

• 64KB I-cache/D-cache

DW ARC 7xx – Configurable & Extendable

6

• MMU with 128 entry 2-way set associative main TLB

• Configurable bus masters (BVCI/AHB/AXI, 32/64 bit)

• “Direct Memory Interface” for instruction and data CCMs

• ARCompact ISA : hybrid 16/32 bit instructions for minimal code size

• DSP extensions and customs instructions: customers can define
their own application specific instructions to accelerate

• Toolchain
• C runtime library
• Kernel
• Userland packages

Overview of porting steps

7

• Userland packages
• Distribution / delivery
• The return path

Toolchain

• Metaware toolchain
– Proven technology;
– Adapted to ARC architecture:

makes use of most ARC-
specific enhancements;

– Not very suitable for building
Linux, because of usage of

8

Linux, because of usage of
GCC extensions:

switch (major_idx) {
case 0: return SCSI_DISK0_MAJOR;
case 1 ... 7: return SCSI_DISK1_MAJOR + major_idx - 1;
case 8 ... 15: return SCSI_DISK8_MAJOR + major_idx - 8;
default: BUG();

return 0;
}

• Machine description:
– gcc/config/arc/arc.md : contains templates

that convert from an intermediate
representation to actual ARC assembly.

– gcc/config/arc/arc.c : the description often
uses C functions to assist in generating ASM.

– gcc/config/arc/ieee-754 : handlers for
software floating point

• Optimization/tuning:

Toolchain : porting GCC
Parser

Genericizer

Gimplifier

Tree SSA
Optimizer

RTL

C

Machine
dependent

code generator

Machine
description

9

gcc

• Optimization/tuning:
– MilePost : machine learning and iterative

feedback mechanism for finding the optimum
tuning options for a specific architecture

• Key issues:
– Correctness of code, performance

RTL
generator

Optimizer

Code
Generator

ASM
binutils

gcc as ldC asm obj exe

• Brcc instruction: compare and branch:

Example

– Limited range, when out of range
needs to be split into cmp and bcc

breq.d r1, 0, .Label
sub.ne r2, r2, 1

cmp r1, 0
beq.d r1, 0, .Label
sub.ne r2, r2, 1

Conditional instruction fails

10

Conditional instruction fails
because of extra cmp

• Adding support for ARC in the assembler (gas)
• Adding support for ARC in ld

– Adding linker scripts

• But also:
– BFD library: cpu-arc.c, elf32-arc.c
– Opcode library: ARC disassembler, opcode generator

• 16/32 bits instructions:
– Mixed endianness;

Toolchain : porting binutils

gcc as ldC asm obj exe

bfd libar
nm

readelf gprof

objcopy
opcode lib

11

– Mixed endianness;
– Unaligned relocations

binutils

gcc as ldC asm obj exe

31 0

0x0000

0x0004

0x0008

0x000c

0x0010

Instruction A

Instruction B Instruction C

Instruction D Instruction E (msb)

Instruction E (lsb) Instruction F

Instruction G

• Just compile and go… not:-(
• C-runtime entry code
• Architecture-specific header files
• Dynamic linker, difference between code/data

– Relocatable code, little/big endian 16/32 bit

• System call handlers

Runtime libraries: uClibc

12

• System call handlers
• Hand-optimized memcpy, strcpy, etc.
• Hand-written implementations for longjmp, but also some

system calls like clone()
• Handlers for atomic operations
• TLS

The kernel

MMU code

Linker scriptTLB
exception
handler

Interrupt
handler

Branch delay
slots

Clock events

Various system calls

Generic IRQ framework

Generic semaphores

13

slots

Cache
functions

Context
switching

code

put_user,
get_user, etc.

Header files

Reuse of generic kernel
components

Architecture specific
changes

Various system calls
and kernel internal

functions

Generic drivers for IDE,
PCI, etc.

Example (branch delay slot):

0x00: b.d 0x30
0x04: ld r0, [r1]
...
0x30:

[r1] not mapped
yet, so exception

triggered

Auxiliary registers set to
track exception return
address (0x04), and

14

0x30: address (0x04), and
branch address (0x30).

What happens if we get a task switch now??

Make sure that complete processor
status is saved and restored…

• Alignment issues, hidden assumptions (i.e. 8KB page size)

• Thread local storage � emulation
• Linking sometimes needs tuning with large objects
• Architecture-specific code in userland packages
• Example: Webkit: knows about ARM, but not about ARC

Userland

15

• Example: Webkit: knows about ARM, but not about ARC
// FIXME: perhaps we should have a more abstract macro that indicates when
// going 4 bytes at a time is unsafe

#if CPU(ARM) || CPU(SH4)
const UChar* stringCharacters = string->characters();
for (unsigned i = 0; i != length; ++i) {

if (*stringCharacters++ != *characters++)
return false;

}
return true;

#else
/* Do it 4-bytes-at-a-time on architectures where it's safe */

const uint32_t* stringCharacters = reinterpret_cast<const uint32_t*>(string->characters());
const uint32_t* bufferCharacters = reinterpret_cast<const uint32_t*>(characters);

• Customers expect more than kernel + toolchain
• Many (all) customers have their own preference

– What flavor to choose?

• There’s a lot to leverage from OSS community

Distribution / delivery

16

• Started with minimal approach:
– Kernel, toolchain and minimal Root FS on SourceForge;
– Supporting customers in porting their libraries.

• Will be extended over time
– Extend distribution by adding packages and libraries

• Being a good citizen… or sound business sense?
– ARC GCC 2.3 and ARC Linux 1.3 (based on Linux

2.6.30 and GCC 4.2.1) available at:
http://sourceforge.net/projects/arc-linux/

The return path

17

• Next steps:
– Get ARC Linux merged into Linux kernel
– Learn to play according the OSS community rules

• Linux audio/video solutions, including highly
optimized codecs
– ARC can reduce porting effort because of the single

processor architecture for both host (ARC Linux) and
DSP (ARC Media subsystems).

Future work

18

DSP (ARC Media subsystems).

• Mainlining Linux kernel and tools

• ARC and Linux work together and form a nice alternative
with size, power and configurability benefits

• In general: the further down the chain you get, the easier it
gets to port it;

• However, core-specific optimizations and assumptions are
often well hidden and require some debugging/porting effort;

Conclusions

19

often well hidden and require some debugging/porting effort;

• Portability is for people who cannot write new
programs; verdict: busted/plausible/confirmed

20

