Practical Experience with
Linux A/B Upgrades

Leon Anavi
Konsulko Group

leon.anavi@konsulko.com
leon@anavi.org K nsu I kO
Embedded Linux Conference 2021 roup

Konsulko Group K%?gﬂ',;m

m Services company specializing in Embedded Linux and Open Source Software
m Hardware/software build, design, development, and training services
m Based in San Jose, CA with an engineering presence worldwide

http://konsulko.com/

http://konsulko.com/

roup

Strategies and open source solutions for updating embedded Linux devices
The Yocto Project

Mender

RAUC

Integration of containers with A/B upgrades

Conclusions

Things to Consider for Software Updates (1/2) K%?gﬂ'.lm

m Are there any limitations of the disk space?
m Are there any limitations of the network bandwidth for the data transfer?
m How do you manage applications?

B Do you need a container-based solution?

m Do you need A/B or binary delta updates?

How to upgrade: over the air, cable, USB stick, etc?

Is the device mission critical?

Things to Consider for Software Updates (2/2) K%?gﬂ'.lm

m What distribution and build system do you use?

m |s there Yocto/OpenEmbedded BSP for the hardware you use?

m |s software update technology compatible with the YP, OE and the BSP?
m Which Yocto Project released do you need for your product?

How to update fleet of devices?

Common Embedded Linux Update Strategies K%?_gﬂllg(o

m A/B updates (dual redundant scheme)
m Delta updates
m Container-based updates

Combined strategies

A/B Upgrades K%?gﬂg(o

Dual A/B identical rootfs partitions

Data partition for storing any persistent data which is left unchanged during the
update process

Typically a client application runs on the embedded device and periodically
connects to a server to check for updates

If a new software update is available, the client downloads and installs it on the
other partition

Fallback in case of update failure

Combined Strategies K%?g‘.}'.lm

Container technology has changed the way application developers interact with
the cloud and some of the good practices are nowadays applied to the
development workflow for embedded devices and loT

Containers make applications faster to deploy, easier to update and more secure
through isolation

There are use cases on powerful embedded devices where containers are
combined with A/B updates of the base custom embedded Linux distribution

Popular open source solution for updates

= Mender

= RAUC

m SWUpdate
m Swupd

m UpdateHub
m Balena

Snap

OSTree
Aktualizr
Aktualizr-lite
QtOTA
Torizon

FullMetalUpdate

Rpm-ostree (used in Project Atomic)

K%nsulko
roup

Build Frameworks for Embedded Linux Distro K%?_gﬂllg(o

Popular open source build systems fro custom embedded Linux distributions:
Yocto/OpenEmbedded

Buildroot

PTXdist

OpenWRT

Other

Can | just use Debian? K%?g‘d'.lm

m Debian is a stable full distribution with tens of thousands of packages available as
binary files for installation without the need to cross-compile from source

B Numerous Debian derivatives exist for embedded devices

debian

m Debian or Yocto Project? Which is the Best for your Embedded Linux Project?
Chris Simmonds, Embedded Linux Conference Europe 2019
https://www.youtube.com/watch?v=iDIIXa85SzUgr

The Yocto Project K%?éﬂ'.&“

Open source collaborative project of the Linux foundation for creating custom
Linux-based systems for embedded devices using the OpenEmbedded Build
System

OpenEmbedded Build System includes BitBake and OpenEmbedded Core

Poky is a reference distribution of the Yocto Project provided as metadata, without
binary files, to bootstrap your own distribution for embedded devices

Bi-annual release cycle

Long term support (LTS) release covering two-year period

The Yocto Project

Codename

Honister
Hardknott
Gatesgarth
Dunfell

Zeus

Warrior

Thud

ELC 2021, Leon

3.4
3.3
3.2
3.1

3.0
2.7
2.6

Version

Release Date

October 2021
April 2021
October 2020
April 2020

October 2019
April 2019
November 2018

Konsulko

Support Level

Planning

Stable

EOL

Long Term Stable

EOL
EOL
EOL

Yocto Override Syntax Change K%?g‘d'.lm

® |n release 3.4 Honister (scheduled for October 2021), the Yocto Project override
syntax changes the : character replacing the use of _ previously, for example:

IMAGE_INSTALL:append = " docker-ce"
® To help with migration of layers OE-Core provides a script:

<oe-core>/scripts/contrib/convert-overrides.py <layerdir>

m For details:

hﬁtp:.//Elocs.yoctoproject.org/next/migration-guides/migration-3.4.html#release-3-4
-honister

http://docs.yoctoproject.org/next/migration-guides/migration-3.4.html#release-3-4-honister
http://docs.yoctoproject.org/next/migration-guides/migration-3.4.html#release-3-4-honister

Mender Konsulko

m Available as a free open source or paid commercial and enterprise plans

m A/B update scheme for open source and all plans as well as delta updates for
professional and enterprise plans

m Back-end services (Hosted Mender)
m Written in Go, Python, JavaScript

®m Yocto/OE integration through meta-mender and extra BSP layers:
https://github.com/mendersoftware/meta-mender

Source code in GitHub under Apache 2.0

L
M MENDER

https://github.com/mendersoftware/meta-mender

Mender Supported Devices K%I?_gtdllg(o

The following hardware platforms and development boards are supported:
m Raspberry Pi
m BeagleBone
®m |ntel x86-64
m Rockchip
Allwinner
NXP

And more in: https://github.com/mendersoftware/meta-mender-community

https://github.com/mendersoftware/meta-mender-community

meta-mender-community K%nsulko

roup

¥ dunfell ~ ¥ 7branches © 0tags

Gotofile | Addfile~ About

This branch is 30 commits ahead, 18 commits behind zeus.

“ﬁ

mirzak Merge pull request #175 from Bc

-github
meta-mender-atmel
meta-mender-beaglebone
meta-mender-clearfog
meta-mender-coral
meta-mender-intel
meta-mender-nxp
meta-mender-odroid
meta-mender-gemu
meta-mender-raspberrypi
meta-mender-rackchip
meta-mender-sunxi
meta-mender-tegra

meta-mender-up

meta-mender-update-modules

meta-mender-variscite

1% Pull request

[® compare

updates - v 3d2c831 11 daysago YP) 341 commits

Added a configuration file for stalebot

meta-mender-atmel: sama5d27_som1: rebase patch on zeus
switch to upstream zeus branch

clearfog: fix missing $ in local.append template

coral: add missing CONFIG_SYS_REDUNDAND_ENVIRONMENT
intel: update to zeus

meta-mender-nxp: imx7s-warp: rebase patch on zeus

odroid: update to zeus

[qemu] Update the Poky branch description in the Readme to dunfell
Bump meta-mender-raspberrypi to dunfell

rockchip: update manifest file to point to thud branches
meta-mender-sunxi: Update README

Update documentation and scripts for dunfell

add support for UP2 board

Update srcrev for upstream fix; path to version-compare script... again

u-boot-variscite: Adjust patches to latest upstream version.

6 months ago
2 months ago
3 months ago
13 months ago
3 months ago
7 months ago
2 months ago
7 months ago
last month

21 days ago
2 years ago
2 months ago
12 days ago
2 years ago
7 months ago

17 months ago

Community supported integration
layers for Mender on various boards

[0 Readme

& Apache-2.0 License

Releases

No releases published

Packages

No packages published

Contributors 10

2000008
270

Languages

N
Shell 39.7%

L L]
BitBake 35.2%
Pawn 13 3% © Batchfile 5.5%
@ Assembly 3.8% ® NASL 1.1%
Other 1.4%

Konsulko
Mender roup

Mender A/B updates supports two client modes:
® Managed (default) - client running as a daemon polls the server for updates

m Standalone - updates are triggered locally which is suitable for physical media or
any network update in pull mode

SYSTEMD_AUTO_ENABLE_pn-mender = "disable"

$ cd tmp/deploy/images/raspberrypi4
$ python3 -m http.server
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

$ mender -install http://example.com:8000/core-image-base-raspberrypi4.mender

Mender Data Partition Konsulko
roup

Mender creates a /data partition to store persistent data, preserved during
Mender updates

the Mender client on the embedded devices uses /data/mender to preserve data
and state across updates

Variable MENDER_DATA_PART _SIZE_MB configures the size of the /data
partition. By default it is 128 MB. If enabled, mender feature mender-growfs-
data which relies on systemd-growfs tries to resize on first boot with the
remaining free space

It is possible to create an image for the data partition in advance with bitbake:

IMAGE_FSTYPES_append = " dataimg"

Konsulko
Mender S roup

Steps to install Mender A/B update on embedded Device:
m Apply update

® Reboot

® On the first boot after a successful update, the Mender client will commit the
update.

Devices

Check for update
Build system Mender Artifact Mender Server .
Mender Artifact Mender client

i i | K 1k
Mender Single File Artifact Jl%ﬂp o

m Deployment of a single file, directory or even a container image is possible
through “Application updates”

Mender
Client

ELC

Mender add-ons K%'Fé‘d'.lm

Mender supports several add-ons:
m Remote Terminal - interactive shell sessions with full terminal emulation
®m File Transfer - upload and download files to and from a device

m Port Forward - forward any local port to a port on a device without opening
ports on the device

Configure - apply configuration to your devices through a uniform interface

Mender with x86-64 support K%'F%t'.'.lm

m Mender added support for x86-64 machines through GRUB in 2018

®m |nitial installation of the distribution is most commonly done using a live image on
a USB stick

v initramfs-module-install_%.bbappend: Fix Mender Browse files

Fix Mender installation from a USB stick (hddimg) on machines with
BIOS by using the same installation script as for EFI.

Changelog: Fix Mender installation from a USB stick for BIOS

Signed-off-by: Leon Anavi <leon.anavi@konsulko.com>

#° master (#1279)

& leon-anavi committed on Jan22 1 parent be4a67c commit 5c6cbllab9e7alc930446d3578F6a2e4e72471f4

Konsulk
RAUC Group

m A lightweight update client that runs on an Embedded Linux device and reliably
controls the procedure of updating the device with a new firmware revision

m Supports multiple update scenarios

®m Provides tool for the build system to create, inspect and modify update bundles
m Uses X.509 cryptography to sign update bundles

m Compatible with the Yocto Project, PTXdist and Buildroot

N RAUC

RAUC Licenses K%I;I_gl‘.l‘ ||:I>(°

m RAUC - LGPLv2.1
https://github.com/rauc/rauc

m meta-rauc - MIT
https://github.com/rauc/meta-rauc

® rauc-hawkbit - LGPLv2.1
https://github.com/rauc/rauc-hawkbit

® rauc-hawkbit-updater - LGPLv2.1
https://github.com/rauc/rauc-hawkbit-updater

https://github.com/rauc/rauc
https://github.com/rauc/meta-rauc
https://github.com/rauc/rauc-hawkbit
https://github.com/rauc/rauc-hawkbit-updater

RAUC Integration Steps K%'Fé‘d'.lm

m Select an appropriate bootloader

m Enable SquashFS in the Linux kernel configurations

m ext4 root file system (RAUC does not have an ext2 / ext3 file type)
m Create specific partitions that matches the RAUC slots

m Configure Bootloader environment and create a script to switch RAUC slots

Create a certificate and a keyring to RAUC’s system.conf

RAUC Data Partition K%'}éﬂ'.}“

Supports single and redundant data partitions

For redundant data partitions the active rootfs slot has to mount the correct data
partition dynamically, for example with a udev rule

data in rootfs single redundant
data partition data partition

meta-rauc-community K%?é‘d.'.&“

Yocto/OE layer with examples how to integrate RAUC on various machines
Started in 2020
Moved to the RAUC organization in GitHub in 2021

Currently supports Raspberry Pi through meta-raspberrypi and Sunxi (Allwinner)
devices through meta-sunxi

https://github.com/rauc/meta-rauc-community/

Contributions are always welcome as GitHub pull requests!

https://github.com/rauc/meta-rauc-community/

' i K 1k
RAUC Example with Raspberry Pi 4 _r!!gldpo

m |ntegration layer (branch Dunfell):
https://github.com/rauc/meta-rauc-community/tree/master/meta-rauc-raspberrypi

m Add layers to bblayers.conf and add the following configuration to local.conf:

MACHINE = "raspberrypi4"
DISTRO_FEATURES append =" systemd"
VIRTUAL-RUNTIME_init_manager = "systemd"
DISTRO_FEATURES BACKFILL CONSIDERED = "sysvinit"
VIRTUAL-RUNTIME initscripts = ""

IMAGE_INSTALL append = " rauc"
IMAGE_FSTYPES="tar.bz2 ext4 wic.bz2 wic.bmap"
SDIMG_ROOTFS TYPE="ext4"

ENABLE_UART = "1"

RPI_USE_U BOOT = "1"

PREFERRED_PROVIDER virtual/bootloader = "u-boot"
WKS_ FILE = "sdimage-dual-raspberrypi.wks.in"

Manual RAUC Update of Raspberry Pi 4 K&?ﬁt‘.‘.}“

® On the build system:

cd tmp/deploy/images/raspberrypid/
python3 -m http.server

m On the embedded device:

wget http://example.com:8000/update-bundle-raspberrypi4.raucb -P /tmp
rauc install /tmp/update-bundle-raspberrypi4.raucb

reboot

' K 1k
Read-only Root Filesystem ,rll_gﬂpo

Yocto and OpenEmbedded offer two options to create a read-only root filesystem:
m Thought the image’s recipe file:

IMAGE_FEATURES += "read-only-rootfs"
m Alternatively, through local.conf:

EXTRA_IMAGE_FEATURES = "read-only-rootfs"

m Beware, there might be packages in the image that expect the root filesystem to
be writable and might not function properly. A solution is to move these files and
directories to the data partition.

Combined Strategies with Containers Konsulko
roup

Yocto/OE layer meta-virtualization provides support for building Xen, KVM,
Libvirt, docker and associated packages necessary for constructing OE-based
virtualized solutions

virtualization has to be added to the DISTRO _FEATURES:
DISTRO_FEATURES append = " virtualization"
For example adding Docker to the embedded Linux distribution is easy:

IMAGE_INSTALL append = " docker-ce"

There are use cases on powerful embedded devices where contains are combined
with A/B updates of the base Linux distribution built with Yocto/OE

: Konsulko
Conclusion roup

m There are numerous things to consider when implementing an upgrade
mechanism for an embedded Linux device

m Use open source software for upgrade mechanism instead of another proprietary
homegrown solution

m Mender and RAUC are powerful solutions for A/B upgrades with excellent
Yocto/OpenEmbedded integration as well as for alternative build frameworks

m Combined strategies for A/B upgrades with containers for applications are
increasingly popular nowadays

Real-world implementations of A/B upgrades very often require a data partition
for storing any persistent data which is left unchanged during the update process

Thank You!

#TuxTurns30

K%nsulko
roup

Useful links:
https://www.yoctoproject.org/
https://mender.io/
https://rauc.io/
https://git.yoctoproject.org/cgit/cqgit.cgi/meta-virtualization/

https://www.konsulko.com/building-platforms-with-secure-ove
r-the-air-updating/

https://www.konsulko.com/how-mender-works/

https://www.konsulko.com/getting-started-with-rauc-on-raspb
erry-pi-2/

https://www.yoctoproject.org/
https://mender.io/
https://rauc.io/
https://git.yoctoproject.org/cgit/cgit.cgi/meta-virtualization/
https://www.konsulko.com/building-platforms-with-secure-over-the-air-updating/
https://www.konsulko.com/building-platforms-with-secure-over-the-air-updating/
https://www.konsulko.com/how-mender-works/
https://www.konsulko.com/getting-started-with-rauc-on-raspberry-pi-2/
https://www.konsulko.com/getting-started-with-rauc-on-raspberry-pi-2/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

