

Practical Experience with
Linux A/B Upgrades

Leon Anavi
Konsulko Group
leon.anavi@konsulko.com
leon@anavi.org
Embedded Linux Conference 2021

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Konsulko Group

 Services company specializing in Embedded Linux and Open Source Software

 Hardware/software build, design, development, and training services

 Based in San Jose, CA with an engineering presence worldwide

 http://konsulko.com/

http://konsulko.com/

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Agenda

 Strategies and open source solutions for updating embedded Linux devices

 The Yocto Project

 Mender

 RAUC

 Integration of containers with A/B upgrades

 Conclusions

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Things to Consider for Software Updates (1/2)

 Are there any limitations of the disk space?

 Are there any limitations of the network bandwidth for the data transfer?

 How do you manage applications?

 Do you need a container-based solution?

 Do you need A/B or binary delta updates?

 How to upgrade: over the air, cable, USB stick, etc?

 Is the device mission critical?

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Things to Consider for Software Updates (2/2)

 What distribution and build system do you use?

 Is there Yocto/OpenEmbedded BSP for the hardware you use?

 Is software update technology compatible with the YP, OE and the BSP?

 Which Yocto Project released do you need for your product?

 How to update fleet of devices?

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Common Embedded Linux Update Strategies

 A/B updates (dual redundant scheme)

 Delta updates

 Container-based updates

 Combined strategies

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

A/B Upgrades

 Dual A/B identical rootfs partitions

 Data partition for storing any persistent data which is left unchanged during the
update process

 Typically a client application runs on the embedded device and periodically
connects to a server to check for updates

 If a new software update is available, the client downloads and installs it on the
other partition

 Fallback in case of update failure

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Combined Strategies

 Container technology has changed the way application developers interact with
the cloud and some of the good practices are nowadays applied to the
development workflow for embedded devices and IoT

 Containers make applications faster to deploy, easier to update and more secure
through isolation

 There are use cases on powerful embedded devices where containers are
combined with A/B updates of the base custom embedded Linux distribution

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Popular open source solution for updates

 Mender

 RAUC

 SWUpdate

 Swupd

 UpdateHub

 Balena

 Snap

 OSTree

 Aktualizr

 Aktualizr-lite

 QtOTA

 Torizon

 FullMetalUpdate

 Rpm-ostree (used in Project Atomic)

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Build Frameworks for Embedded Linux Distro

Popular open source build systems fro custom embedded Linux distributions:

 Yocto/OpenEmbedded

 Buildroot

 PTXdist

 OpenWRT

 Other

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Can I just use Debian?

 Debian is a stable full distribution with tens of thousands of packages available as
binary files for installation without the need to cross-compile from source

 Numerous Debian derivatives exist for embedded devices

 Debian or Yocto Project? Which is the Best for your Embedded Linux Project?
Chris Simmonds, Embedded Linux Conference Europe 2019
https://www.youtube.com/watch?v=iDllXa8SzUgr

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

The Yocto Project

 Open source collaborative project of the Linux foundation for creating custom
Linux-based systems for embedded devices using the OpenEmbedded Build
System

 OpenEmbedded Build System includes BitBake and OpenEmbedded Core

 Poky is a reference distribution of the Yocto Project provided as metadata, without
binary files, to bootstrap your own distribution for embedded devices

 Bi-annual release cycle

 Long term support (LTS) release covering two-year period

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

The Yocto Project

Codename Version Release Date Support Level

Honister 3.4 October 2021 Planning

Hardknott 3.3 April 2021 Stable

Gatesgarth 3.2 October 2020 EOL

Dunfell 3.1 April 2020 Long Term Stable

Zeus 3.0 October 2019 EOL

Warrior 2.7 April 2019 EOL

Thud 2.6 November 2018 EOL

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Yocto Override Syntax Change

 In release 3.4 Honister (scheduled for October 2021), the Yocto Project override
syntax changes the : character replacing the use of _ previously, for example:

IMAGE_INSTALL:append = " docker-ce"

 To help with migration of layers OE-Core provides a script:

<oe-core>/scripts/contrib/convert-overrides.py <layerdir>

 For details:
http://docs.yoctoproject.org/next/migration-guides/migration-3.4.html#release-3-4
-honister

http://docs.yoctoproject.org/next/migration-guides/migration-3.4.html#release-3-4-honister
http://docs.yoctoproject.org/next/migration-guides/migration-3.4.html#release-3-4-honister

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Mender

 Available as a free open source or paid commercial and enterprise plans

 A/B update scheme for open source and all plans as well as delta updates for
professional and enterprise plans

 Back-end services (Hosted Mender)

 Written in Go, Python, JavaScript

 Yocto/OE integration through meta-mender and extra BSP layers:
https://github.com/mendersoftware/meta-mender

 Source code in GitHub under Apache 2.0

https://github.com/mendersoftware/meta-mender

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Mender Supported Devices

The following hardware platforms and development boards are supported:

 Raspberry Pi

 BeagleBone

 Intel x86-64

 Rockchip

 Allwinner

 NXP

 And more in: https://github.com/mendersoftware/meta-mender-community

https://github.com/mendersoftware/meta-mender-community

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

meta-mender-community

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Mender

Mender A/B updates supports two client modes:

 Managed (default) - client running as a daemon polls the server for updates

 Standalone - updates are triggered locally which is suitable for physical media or
any network update in pull mode

SYSTEMD_AUTO_ENABLE_pn-mender = "disable"

$ cd tmp/deploy/images/raspberrypi4
$ python3 -m http.server
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

$ mender -install http://example.com:8000/core-image-base-raspberrypi4.mender

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Mender Data Partition

 Mender creates a /data partition to store persistent data, preserved during
Mender updates

 the Mender client on the embedded devices uses /data/mender to preserve data
and state across updates

 Variable MENDER_DATA_PART_SIZE_MB configures the size of the /data
partition. By default it is 128 MB. If enabled, mender feature mender-growfs-
data which relies on systemd-growfs tries to resize on first boot with the
remaining free space

 It is possible to create an image for the data partition in advance with bitbake:

IMAGE_FSTYPES_append = " dataimg"

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Mender

Steps to install Mender A/B update on embedded Device:

 Apply update

 Reboot

 On the first boot after a successful update, the Mender client will commit the
update.

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Mender Single File Artifact

 Deployment of a single file, directory or even a container image is possible
through “Application updates”

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Mender add-ons

Mender supports several add-ons:

 Remote Terminal - interactive shell sessions with full terminal emulation

 File Transfer - upload and download files to and from a device

 Port Forward - forward any local port to a port on a device without opening
ports on the device

 Configure - apply configuration to your devices through a uniform interface

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Mender with x86-64 support

 Mender added support for x86-64 machines through GRUB in 2018

 Initial installation of the distribution is most commonly done using a live image on
a USB stick

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

RAUC

 A lightweight update client that runs on an Embedded Linux device and reliably
controls the procedure of updating the device with a new firmware revision

 Supports multiple update scenarios

 Provides tool for the build system to create, inspect and modify update bundles

 Uses X.509 cryptography to sign update bundles

 Compatible with the Yocto Project, PTXdist and Buildroot

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

RAUC Licenses

 RAUC – LGPLv2.1
https://github.com/rauc/rauc

 meta-rauc - MIT
https://github.com/rauc/meta-rauc

 rauc-hawkbit – LGPLv2.1
https://github.com/rauc/rauc-hawkbit

 rauc-hawkbit-updater – LGPLv2.1
https://github.com/rauc/rauc-hawkbit-updater

https://github.com/rauc/rauc
https://github.com/rauc/meta-rauc
https://github.com/rauc/rauc-hawkbit
https://github.com/rauc/rauc-hawkbit-updater

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

RAUC Integration Steps

 Select an appropriate bootloader

 Enable SquashFS in the Linux kernel configurations

 ext4 root file system (RAUC does not have an ext2 / ext3 file type)

 Create specific partitions that matches the RAUC slots

 Configure Bootloader environment and create a script to switch RAUC slots

 Create a certificate and a keyring to RAUC’s system.conf

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

RAUC Data Partition

 Supports single and redundant data partitions

 For redundant data partitions the active rootfs slot has to mount the correct data
partition dynamically, for example with a udev rule

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

meta-rauc-community

 Yocto/OE layer with examples how to integrate RAUC on various machines

 Started in 2020

 Moved to the RAUC organization in GitHub in 2021

 Currently supports Raspberry Pi through meta-raspberrypi and Sunxi (Allwinner)
devices through meta-sunxi

 https://github.com/rauc/meta-rauc-community/

Contributions are always welcome as GitHub pull requests!

https://github.com/rauc/meta-rauc-community/

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

RAUC Example with Raspberry Pi 4

 Integration layer (branch Dunfell):
https://github.com/rauc/meta-rauc-community/tree/master/meta-rauc-raspberrypi

 Add layers to bblayers.conf and add the following configuration to local.conf:

MACHINE = "raspberrypi4"
DISTRO_FEATURES_append = " systemd"
VIRTUAL-RUNTIME_init_manager = "systemd"
DISTRO_FEATURES_BACKFILL_CONSIDERED = "sysvinit"
VIRTUAL-RUNTIME_initscripts = ""
IMAGE_INSTALL_append = " rauc"
IMAGE_FSTYPES="tar.bz2 ext4 wic.bz2 wic.bmap"
SDIMG_ROOTFS_TYPE="ext4"
ENABLE_UART = "1"
RPI_USE_U_BOOT = "1"
PREFERRED_PROVIDER_virtual/bootloader = "u-boot"
WKS_FILE = "sdimage-dual-raspberrypi.wks.in"

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Manual RAUC Update of Raspberry Pi 4

 On the build system:

cd tmp/deploy/images/raspberrypi4/
python3 -m http.server

 On the embedded device:

wget http://example.com:8000/update-bundle-raspberrypi4.raucb -P /tmp
rauc install /tmp/update-bundle-raspberrypi4.raucb
reboot

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Read-only Root Filesystem

Yocto and OpenEmbedded offer two options to create a read-only root filesystem:

 Thought the image’s recipe file:

IMAGE_FEATURES += "read-only-rootfs"

 Alternatively, through local.conf:

EXTRA_IMAGE_FEATURES = "read-only-rootfs"

 Beware, there might be packages in the image that expect the root filesystem to
be writable and might not function properly. A solution is to move these files and
directories to the data partition.

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Combined Strategies with Containers

 Yocto/OE layer meta-virtualization provides support for building Xen, KVM,
Libvirt, docker and associated packages necessary for constructing OE-based
virtualized solutions

 virtualization has to be added to the DISTRO_FEATURES:

DISTRO_FEATURES_append = " virtualization"

 For example adding Docker to the embedded Linux distribution is easy:

IMAGE_INSTALL_append = " docker-ce"

 There are use cases on powerful embedded devices where contains are combined
with A/B updates of the base Linux distribution built with Yocto/OE

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Conclusion

 There are numerous things to consider when implementing an upgrade
mechanism for an embedded Linux device

 Use open source software for upgrade mechanism instead of another proprietary
homegrown solution

 Mender and RAUC are powerful solutions for A/B upgrades with excellent
Yocto/OpenEmbedded integration as well as for alternative build frameworks

 Combined strategies for A/B upgrades with containers for applications are
increasingly popular nowadays

 Real-world implementations of A/B upgrades very often require a data partition
for storing any persistent data which is left unchanged during the update process

ELC 2021, Leon Anavi, Practical Experience with Linux A/B Upgrades

Thank You!

Useful links:

 https://www.yoctoproject.org/

 https://mender.io/

 https://rauc.io/

 https://git.yoctoproject.org/cgit/cgit.cgi/meta-virtualization/

 https://www.konsulko.com/building-platforms-with-secure-ove
r-the-air-updating/

 https://www.konsulko.com/how-mender-works/

 https://www.konsulko.com/getting-started-with-rauc-on-raspb
erry-pi-2/

https://www.yoctoproject.org/
https://mender.io/
https://rauc.io/
https://git.yoctoproject.org/cgit/cgit.cgi/meta-virtualization/
https://www.konsulko.com/building-platforms-with-secure-over-the-air-updating/
https://www.konsulko.com/building-platforms-with-secure-over-the-air-updating/
https://www.konsulko.com/how-mender-works/
https://www.konsulko.com/getting-started-with-rauc-on-raspberry-pi-2/
https://www.konsulko.com/getting-started-with-rauc-on-raspberry-pi-2/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

