

Boundary-Scan Tutorial

Boundary-Scan Tutorial

 ii

See the ASSET homepage on the World Wide Web at
http://www.asset-intertech.com

ASSET and the ASSET logo are registered trademarks of
ASSET InterTech, Inc.

Windows is a registered trademark of Microsoft Corporation.

© 2000, ASSET InterTech, Inc.
© 2000, R.G. Bennetts

Boundary-Scan Tutorial

 iii

Table of Contents

Introduction .. 1

Chapter 1: The Motivation for Boundary-Scan Architecture ... 2

Chapter 2: The Principle of Boundary-Scan Architecture........ 4
Using the Scan Path ... 5

Chapter 3: IEEE 1149.1 Device Architecture............................ 11
The Instruction Register.. 12
The Instructions .. 13
Using the Instruction Register (IR).. 15
Use of the “Capture 01” Mode... 17
The Test Access Port (TAP) ... 19
The Bypass Register... 23
The Identification Register .. 23
Use of the lsb = 1 Feature .. 24
Boundary-Scan Register... 26
Providing Boundary-Scan Cells .. 29
Accessing Other Core-Logic Registers... 31

Chapter 4: Application at the Board Level............................... 32
General Strategy... 32
Interconnect Test Example ... 33
Practical Aspects of Using Boundary-Scan Technology..................... 37

Handling Non-Boundary-Scan Clusters .. 37
Access to RAM Arrays .. 39
Other Issues of BScan-to-Non-BScan Interfacing 40
Assembling the Final Test Program.. 43
Tester Hardware ... 44

Chapter 5: Related Standards ... 46
Boundary-Scan Description Language (BSDL)................................... 46

What Is BSDL? ... 46
How BSDL is Used.. 47
Elements of BSDL... 47

Hierarchical Scan Description Language (HSDL)............................... 50
What Is HSDL? ... 50
HSDL Module Statements... 51

Serial Vector Format (SVF)... 53
What Is SVF?.. 53
SVF Structure ... 55

Boundary-Scan Tutorial

 iv

Chapter 6: Boundary-Scan Tools ... 60
Product Life Cycle Issues ... 60

Design Debug ... 60
Manufacturing Test ... 61
Field Test and Repair.. 63

Boundary-Scan Tools Requirements .. 64
Design Debug ... 65
Manufacturing Test ... 66
Field Test and Repair.. 70

Chapter 7: Conclusion ... 71

Bibliography.. 72

Reference .. 72

Boundary-Scan Tutorial

 v

Table of Figures

Figure 1: ICT vs. Functional Test .. 2
Figure 2: Principle of Boundary-Scan Architecture........................ 4
Figure 3: Using the Boundary-Scan Path 5
Figure 4: Basic Boundary-Scan Cell.. 7
Figure 5: Bed-of-Nails Fault Coverage.. 8
Figure 6: Boundary-Scan Fault Coverage (Intest)......................... 9
Figure 7: Boundary-Scan Fault Coverage (Extest)...................... 10
Figure 8: IEEE 1149.1 Chip Architecture..................................... 11
Figure 9: The Instruction Register ... 12
Figure 10: Using the Instruction Register — Step 1 15
Figure 11: Using the Instruction Register — Step 3 17
Figure 12: TAP Controller Global View.. 20
Figure 13: TAP Controller State Table Diagram.......................... 21
Figure 14: The Bypass Register .. 23
Figure 15: Device Identification Code Structure.......................... 24
Figure 16: Use of the lsb = 1 Feature — Step 1.......................... 25
Figure 17: Use of the lsb = 1 Feature — Step 3.......................... 26
Figure 18: Basic Boundary-Scan Cell (Input) 27
Figure 19: Basic Boundary-Scan Cell (Input/Output) 28
Figure 20: A Reason for the Hold State....................................... 28
Figure 21: Control of Tristate Outputs ... 30
Figure 22: Bidirectional Input/Output Pins 30
Figure 23: Interconnect Testing Example.................................... 33
Figure 24: Interconnect Testing Solution..................................... 34
Figure 25: Detecting the Fault ... 35
Figure 26: Locating the Fault... 37
Figure 27. Handling Non-BScan Clusters.................................... 38
Figure 28. Testing a RAM Array Via Boundary Scan 39
Figure 29. BScan-to-non-BScan Interface 40
Figure 30. Assembling a Test Program: Tool Flow 43
Figure 31. Tester Hardware .. 45

Boundary-Scan Tutorial

 vi

Boundary-Scan Tutorial

 1

Introduction

In this tutorial, you will learn the basic elements of
boundary-scan architecture — where it came from, what
problem it solves, and the implications on the design of an
integrated-circuit device. This tutorial also provides an
overview of the data standards applicable to the boundary-
scan architecture and an overview of the software tools
available to perform boundary-scan-based tests.

The core reference is the standard:

IEEE Standard 1149.1-1990 “Test Access Port and
Boundary-Scan Architecture,” available from the
IEEE, 445 Hoes Lane, PO Box 1331, Piscataway,
New Jersey 08855-1331, USA.

The standard was revised in 1993 and again in 1994. You
can also obtain a copy of the standard via the WWW on the
IEEE home page at: http://standards.ieee.org/catalog.

The 1993 revision to the standard, referred to as “1149.1a,”
contained many clarifications, corrections, and minor
enhancements. Two new instructions were introduced in
1149.1a and these are described in this tutorial.

The 1994 supplement contains a description of the
Boundary-Scan Description Language (BSDL).

For further, more recent publications on the boundary-scan
architecture, see the Bibliography at the end of this tutorial.

Boundary-Scan Tutorial

 2

Chapter 1: The Motivation for Boundary-
Scan Architecture

Since the mid-1970s, the structural testing of loaded printed
circuit boards (PCBs) has relied very heavily on the use of
the so-called in-circuit “bed-of-nails” technique (Figure 1).
This method of testing makes use of a fixture containing a
bed-of-nails to access individual devices on the board
through test lands laid into the copper interconnect, or other
convenient contact points. Testing then proceeds in two
phases: the power-off tests followed by power-on tests.
Power-off tests check the integrity of the physical contact
between nail and the on-board access point. They then
carry out open and shorts tests based on impedance
measurements.

Figure 1: ICT vs. Functional Test

Power-on tests apply stimulus to a chosen device on a
board, with an accompanying measurement of the response
from that device. Other devices that are electrically
connected to the device-under-test are usually placed into a
safe state (a process called “guarding”). In this way, the

Boundary-Scan Tutorial

 3

tester is able to check the presence, orientation, and
bonding of the device-under-test in place on the board.

Fundamentally, the in-circuit bed-of-nails technique relies on
physical access to all devices on a board. For plated-
through-hole technology, the access is usually gained by
adding test lands into the interconnects on the “B” side of
the board — that is, the solder side of the board. The advent
of onserted devices (surface mount) meant that
manufacturers began to place components on both sides of
the board — the “A” side and the “B” side. The smaller pitch
between the leads of surface-mount components caused a
corresponding decrease in the physical distance between
the interconnects. This had serious impact on the ability to
place a nail accurately onto a target test land. The whole
question of access was further compounded by the
development of multi-layer boards.

Such was the situation in the mid-1980s when a group of
concerned test engineers in a number of European
electronics systems companies got together to examine the
problem and its possible solutions. The group of people
called themselves the Joint European Test Action Group
(JETAG). Their preferred method of solution was based on
the concept of a serial shift register around the boundary of
the device — hence the name “boundary scan.” Later, the
group was joined by representatives from North American
companies and the ‘E’ for “European” was dropped from the
title of the organization leaving it Joint Test Action Group
(JTAG). This was the organization that finally converted
their ideas into an international standard.

Boundary-Scan Tutorial

 4

Chapter 2: The Principle of Boundary-Scan
Architecture

Each primary input signal and primary output signal is
supplemented with a multi-purpose memory element called
a boundary-scan cell. Cells on device primary inputs are
referred to as “input cells;” cells on primary outputs are
referred to as “output cells.” “Input” and “output” is relative
to the core logic of the device. (Later, we will see that it is
more convenient to reference the terms “input” and “output”
to the interconnect between two or more devices.) See
Figure 2.

Any Digital Chip

Each boundary-scan cell can:
❏ Capture data on its parallel input PI
❏ Update data onto its parallel output PO
❏ Serially scan data from SO to its neighbor’s SI
❏ Behave transparently: PI passes to PO
❏ Note: all digital logic is contained inside the

boundary-scan register

Memory
Element

PI

PO

SOSI

Test Data In (TDI)

Test Clock (TCK)

Test Mode Select (TMS)

Test Data Out (TDO)

Figure 2: Principle of Boundary-Scan Architecture

The collection of boundary-scan cells is configured into a
parallel-in, parallel-out shift register. A parallel load
operation, called a “capture” operation, causes signal values
on device input pins to be loaded into input cells and, signal
values passing from the core logic to device output pins to
be loaded into output cells. A parallel unload operation —

Boundary-Scan Tutorial

 5

called an “update” operation — causes signal values
already present in the output scan cells to be passed out
through the device output pins. Signal values already
present in the input scan cells will be passed into the core
logic.

Data can also be shifted around the shift register, in serial
mode, starting from a dedicated device input pin called
“Test Data In” (TDI) and terminating at a dedicated device
output pin called “Test Data Out” (TDO). The test clock,
TCK, is fed in via yet another dedicated device input pin and
the mode of operation is controlled by a dedicated “Test
Mode Select” (TMS) serial control signal.

Using the Scan Path

At the device level, the boundary-scan elements contribute
nothing to the functionality of the core logic. In fact, the
boundary-scan path is independent of the function of the
device. The value of the scan path is at the board level as
shown in Figure 3.

Core Logic

TDI

TCK

TMS

TDO

Core Logic

TDI

TCK

TMS

TDO

Core Logic

TDI

TCK

TMS

TDO

Core Logic

TDI

TCK

TMS

TDO

TDI

TCK

TMS

TDO

Figure 3: Using the Boundary-Scan Path

Boundary-Scan Tutorial

 6

Figure 3 shows a board containing four boundary-scan
devices. Notice that there is an edge-connector input called
TDI connected to the TDI of the first device. TDO from the
first device is connected to TDI of the second device, and so
on, creating a global scan path terminating at the edge
connector output called TDO. TCK is connected in parallel
to each device TCK input, TMS works similarly.

In this way, particular tests can be applied to the device
interconnects via the global scan path — by loading the
stimulus values into the appropriate device-output scan cells
via the edge connector TDI (shift-in operation), applying the
stimulus (update operation), capturing the responses at
device-input scan cells (capture operation), and shifting the
response values out to the edge connector TDO (shift-out
operation).

Essentially, boundary-scan cells can be thought of as
“virtual nails.”

Figure 4 shows a basic universal boundary-scan cell. It has
four modes of operation: normal, update, capture, and serial
shift. The memory element is shown to be a simple D-type
flip-flop with front-end and back-end multiplexing of data.
(As with all circuits in this tutorial, it is important to note that
the circuit shown in Figure 4 is only an example of how the
requirement defined in the Standard could be realized. The
IEEE 1149.1 Standard does not mandate the design of the
circuit, only its functional specification.)

Boundary-Scan Tutorial

 7

M o d e S h i f t D R

S c a n I n
(S I)

C l o c k D R

S c a n O u t
(S O)

1 D

C 1

Q 1 D

C 1

Q

U p d a t e D R

1
1

G
1
1

G

D a t a _ I n
(P I) D a t a O u t

(P O) S h i f t
R e g i s t e r

P a r a l l e l O u t p u t
R e g i s t e r

I n p u t
M u x

O u t p u t
M u x

Figure 4: Basic Boundary-Scan Cell

During normal mode, Data_In is passed straight through to
Data_Out. During update mode, the content of the output
register is passed through to Data_Out. During capture
mode, the Data_In signal is routed to the shift register and
the value is captured by the next ClockDR. During shift
mode, the Scan_Out of one register flip-flop is passed to the
Scan_In of the next via a hard-wired path. Note that both
capture and shift operations do not interfere with the normal
passing of data from the parallel-in terminal to the parallel-
out terminal. This allows the capture of operational values
“on the fly” and the movement of these values for inspection
without interference. This application of the boundary-scan
architecture has tremendous potential for real-time
monitoring of the operational status of a system — a sort of
electronic camera taking snapshots — and is one reason
why TCK is kept separate from any system clocks.

The use of boundary-scan cells to test the presence,
orientation, and bonding of devices in place was the original
motivation for inclusion in a device. The use of scan cells as
a means of applying tests to individual devices is not the
major application of boundary-scan architecture. Consider
the reason for boundary-scan architecture in the first place.

Boundary-Scan Tutorial

 8

The prime function of the bed-of-nails in-circuit tester was to
test for manufacturing defects, such as missing devices,
damaged devices, open and short circuits, misaligned
devices, and wrong devices. See Figure 5.

Driver Sensor

Defects covered:
nail - plated-through hole - interconnect - solder -
leg - bond wire - device - bond wire - leg - solder -
interconnect - plated-through hole - nail

Figure 5: Bed-of-Nails Fault Coverage

In-circuit testers were not intended to prove the overall
functionality of the devices. It was assumed that devices
had already been tested for functionality when they existed
only as devices (i.e., prior to assembly on the board).
Unfortunately, in-circuit test techniques had to make use of
device functionality in order to test the interconnect structure
— hence the rather large libraries of merchant device
functions and the problems caused by increasing use of
ASICs.

Given that boundary-scan architecture was seen as an
alternative way of testing for the presence of manufacturing
defects, we should question what these defects are, what
causes them, and where they occur.

An examination of the root cause for defects shows them to
be caused by any one of three “shock waves”: electrical
shock (e.g., electrostatic discharge), mechanical shock

Boundary-Scan Tutorial

 9

(e.g., clumsy handling), or thermal shock (e.g., hot spots
caused by the solder operation). A defect, if it occurs, is
likely present either in the periphery of the device (leg, bond
wire, driver amplifier), in the solder, or in the interconnect
between devices. It is very unusual to find damage to the
core logic without there being some associated damage to
the periphery of the device.

In this respect, the boundary-scan cells are precisely where
we want them — at the beginning and ends of the core
function of the device (see Figure 6)

In this mode (INternal TEST), defects covered are:

Driver Sensor

Boundary-scan cells are "Virtual Nails"

scan cell - device - scan cell

Figure 6: Boundary-Scan Fault Coverage (Intest)

and at the beginning and end of interconnect paths (see
Figure 7).

Boundary-Scan Tutorial

 10

In this mode (EXternal TEST), defects covered are:

Driver Sensor

scan cell - driver - bond wire - leg - solder - interconnect -
solder - leg - bond wire - driver - scan cell

Figure 7: Boundary-Scan Fault Coverage (Extest)

Using the boundary-scan cells to test the core functionality
is called “internal test,” shortened to Intest. Using the
boundary-scan cells to test the interconnect structure
between two devices is called “external test,” shortened to
Extest. The use of the cells for Extest is the major
application of boundary-scan architecture, searching for
opens and shorts plus damage to the periphery of the
device. Intest is only really used for very limited testing of
the core functionality (i.e., an existence test — “are you
there, are you alive?”) to identify defects such as devices
missing, incorrectly oriented, or misalignment.

Boundary-Scan Tutorial

 11

Chapter 3: IEEE 1149.1 Device Architecture
After nearly five year’s discussion, the JTAG organization
finally proposed the architecture shown in Figure 8.

Test Data In
TDI Test Data Out

TDO

Test Mode Select
TMS

Test Clock
TCK

Bypass register

Test Reset
TRST* (optional)

Any Digital Chip

Any Internal Register

Identification Register

Boundary-Scan Register

Instruction Register

TAP
Controller

1

1

1

Figure 8: IEEE 1149.1 Chip Architecture

Figure 8 shows the following elements:

�� A set of four dedicated test pins — Test Data In (TDI),

Test Mode Select (TMS), Test Clock (TCK), Test Data
Out (TDO) — and one optional test pin Test Reset
(TRST*). These pins are collectively referred to as the
Test Access Port (TAP).

�� A boundary-scan cell on each device primary input and
primary output pin, connected internally to form a serial
boundary-scan register (Boundary Scan).

�� A finite-state machine TAP controller with inputs TCK,
TMS, and TRST*.

�� An n-bit (n ≥ 2) Instruction Register (IR), holding the
current instruction.

Boundary-Scan Tutorial

 12

�� A 1-bit bypass register (Bypass).
�� An optional 32-bit Identification Register (Ident) capable

of being loaded with a permanent device identification
code.

At any time, only one register can be connected from TDI to
TDO (e.g., IR, Bypass, Boundary-scan, Ident, or even some
appropriate register internal to the core logic). The selected
register is identified by the decoded output of the IR. Certain
instructions are mandatory, such as Extest (boundary-scan
register selected), whereas others are optional, such as the
Idcode instruction (Ident register selected).

Let’s take a closer look at each part of this architecture.

The Instruction Register
An Instruction Register (IR) has a shift section that can be
connected to TDI and TDO, and a hold section, holding the
current instruction as shown in Figure 9.

Scan Register
(Scan-in new instruction/scan-out capture bits)

Scan Register
(Scan-in new instruction/scan-out capture bits)

Hold register
(Holds current instruction)

Hold register
(Holds current instruction)

Decode LogicDecode Logic

10Higher order bits:
current instruction, status bits, informal ident,
results of a power-up self test, ….

TAP
Controller

TAP
Controller IR Control

From
TDI

To
TDO

DR select and control signals routed to selected target register

Figure 9: The Instruction Register

Boundary-Scan Tutorial

 13

There may be some decoding logic between the two
sections depending on the width of the register and number
of different instructions. The control signals to the IR
originate from the TAP controller and either cause a shift-in,
shift-out through the IR shift section, or cause the contents
of the shift section to be passed across to the hold section
(update operation). It is also possible to load (capture)
certain hard-wired values into the shift section of the IR. The
IR must be at least two-bits long (to allow coding of the
three mandatory instructions — Bypass, Sample/Preload,
Extest — but the maximum length of the IR is not defined.
In capture mode, the two least significant bits must capture
a 01 pattern (see Figure 9). The values captured into
higher-order bits are not defined. One possible use of these
higher order bits is to capture an informal identification code
if the 32-bit Ident register is not implemented. In practice,
the only mandated bits for IR capture is the 01 pattern. We
will return to the value of capturing this pattern later in this
tutorial.

The Instructions

The IEEE 1149.1 Standard describes three mandatory
instructions: Bypass, Sample/Preload, and Extest.

The Bypass instruction must be assigned an all-1s code and
when executed, causes the Bypass register to be placed
between the TDI and TDO pins. By definition, the initialized
state of the hold section of the IR should contain the Bypass
instruction unless the optional Identification Register (Ident)
has been implemented, in which case, the Idcode instruction
should be present in the hold section.

The Sample/Preload instruction selects the boundary-scan
register when executed. The instruction sets up the
boundary-scan cells either to sample (capture) values
moving in to the device or to preload known values into the
output boundary-scan cells prior to some follow-on
operation. The code for the Sample/Preload instruction is
not defined.

Boundary-Scan Tutorial

 14

The Extest instruction selects the boundary-scan register
when executed, preparatory to interconnect testing. The
code for Extest is defined as the all-0s code.

The IEEE 1149.1 Standard defines a number of optional
instructions (instructions that do not need to be
implemented, but which have a prescribed operation when
they are used). Examples of optional instructions include:

Intest, the instruction that selects the boundary-scan
register preparatory to applying tests to the core logic of the
device.

Idcode, the instruction to select the Identification Register
between TDI and TDO, preparatory to loading the Idcode
code and reading it out through TDO. Note that if the Idcode
instruction is loaded and there is no Identification Register
present on the device, then the Idcode instruction must be
interpreted as if it were the Bypass instruction.

Runbist, the instruction to initiate an internal self-test routine
and to place the pass/fail result register between TDI and
TDO.

Two new instructions introduced in the 1993 revision,
1149.1a, were Clamp and Highz. Clamp is an instruction
that drives preset values onto the outputs of devices
(established initially with the Sample/Preload instruction)
and then selects the Bypass register between TDI and TDO
(unlike the Sample/Preload instruction). Clamp would be
used to set up safe “guarding” values on the outputs of
certain devices in order to avoid bus contention problems,
for example.

Highz is similar to Clamp, but it leaves the device output
pins in a high-impedance state. Highz also selects the
Bypass register between TDI and TDO.

Boundary-Scan Tutorial

 15

With the exception of Extest and Bypass, the codes for all
instructions are undefined. Given the need for three
mandatory instructions, the minimum length of the IR is two
bits. The maximum length is undefined. Any instruction can
have more than one code and all unused codes are
interpreted as Bypass. Note that the designer may use
certain codes to implement “private” instructions — that is,
instructions whose functions are not made public. In these
circumstances, the designer must state that these codes are
private so that the user can avoid loading the codes.

Using the Instruction Register (IR)
Before proceeding with a description of other parts of the
architecture, we will first examine how to load the IR and
decode its contents. Consider the board circuit shown in
Figure 10.

� Problem: Set device 1 in Bypass, devices 2 and 3 in Extest ready for
interconnect test

� Step 1: Select IRs as active registers in all devices. Load Bypass code
into 1 (all-1s); Extest code into 2 and 3 (all-0s)

………….1111 …………0000 …………0000

TDI

TMS

TCK

TDO

1 2 3

Figure 10: Using the Instruction Register — Step 1

Boundary-Scan Tutorial

 16

Assume that what we want to do is to place Chip 1 into
bypass mode (to shorten the time it takes to get test
stimulus to follow-on devices) and place chips 2 and 3 into
Extest mode preparatory to setting up tests to check the
interconnect between Chips 2 and 3. This set-up requires
loading the Bypass instruction (all-1s) into the IR of chip 1,
and the Extest instruction (all-0s) into the IRs of Chips 2 and
3.

Step 1 is to connect the IRs of all three devices between
their respective TDI and TDO pins. This is achieved by a
special sequence of values on the serial control line TMS
going to each TAP controller. Note that the TMS (and TCK)
lines are connected to all devices in parallel. Any sequence
of values on TMS will be interpreted in the same way by
each TAP controller. Later, we will see the precise TMS
sequence to select the IR between TDI and TDO. For now,
we will assume that such a sequence exists.

Step 2 is to load the appropriate instructions into the various
IRs via the global connection of IRs. If we assume simple
two-bit IRs per device, this operation amounts to a serial
load of the sequence 110000 into the edge-connector TDI to
place 00 in the IRs of Chips 2 and 3, and 11 in the IR of
Chip 1. The IRs are now set up with the correct instructions
loaded in their shift sections.

Step 3, shown in Figure 11, is to continue with values on
TMS to cause each TAP controller to issue the control-
signal values to transfer the values in the shift sections of
the IRs to the hold sections where they become the current
instruction. This is the Update operation. At this point, the
various instructions are obeyed — that is, Chip 1 deselects
the IR and selects the Bypass register between TDI and
TDO (Bypass instruction), and Chips 2 and 3 deselect their
IRs and select their boundary-scan registers between TDI
and TDO (Extest instruction). The devices are now set up
ready for Extest operation.

Boundary-Scan Tutorial

 17

� Step 2: decode and execute new instructions. New target
registers are selected

� Devices now set up to apply interconnect tests between
devices 2 and 3

TDI

TMS

TCK

TDO

1 2 3

Figure 11: Using the Instruction Register — Step 3

Use of the “Capture 01” Mode
Previously we discussed the capture of the fixed 01 pattern
into the least two significant positions of the Instruction
Register. Normally, we would think only of “shift and update”
operations for the IR. The question arises — what is the use
of the “capture 01” pattern?

To answer this question, we need to think about the use of
boundary-scan architecture at the board level. Consider
again the circuit in Figure 10.

Previously, we saw how to set up a test environment
preparatory to carrying out interconnect tests. To do this, we
made use of the test infrastructure (i.e., the on-chip
boundary-scan features plus the board-level TMS and TCK
connections and the chip-to-chip TDO-to-TDI
interconnects). It is important to know that this infrastructure
is fault-free before making use of it. In other words, we must
first “test the tester” before using the tester to test other
parts of the board. This is the purpose of the IR capture 01
operation.

Boundary-Scan Tutorial

 18

Essentially, what happens is as follows:

Step 1: Apply the sequence to TMS, which causes each

device to place the IR between TDI and TDO. At
this stage, there is a serial shift register that starts
at the board TDI input and ends at the board TDO
output and which is made up of the various IRs in
the devices — an IR chain.

Step 2: Apply an additional sequence to TMS to cause

each IR to capture the hardwired 01 into the least
two significant positions of the IR. Higher-order
bits capture what they are set up to capture.
These values are not mandated by the Standard.
The captured 01 values constitute a checkerboard
“flush” test for the serial IR chain.

Step 3: Clock the captured values out of the IR chain to

the board’s TDO output.

If the sequence TDO: 10…10…10… emerges, then we can
be reasonably sure of the following facts:

�� The TMS control signal is properly connected from the

board’s TMS input to the TMS inputs of every device.
�� The TCK control signal is properly connected from the

board’s TCK input to the TCK inputs of every device.
�� The TDO from one device is properly connected to the

TDI of its logical neighbor.
�� Each internal TAP controller is at least capable of

responding correctly to the sequences on TMS that
cause the IR both to capture and to shift.

It is usual to feed the inverse values 10 into the board TDI
input so as to know when to terminate the shift-out phase
(Step 3). These bits are called the “sentinel” bits. They have
an added benefit as they help to remove a possible cause of
incorrect diagnosis if there is a TDI-to-TDO short circuit on
one of the devices.

Boundary-Scan Tutorial

 19

Steps 1 to 3 represent a minimum integrity test for the
boundary-scan infrastructure. Additional tests can be
included. For example: load and execute the Bypass
instruction into all devices to show that the bypass registers
are functioning correctly; load an instruction (e.g., Extest) to
select the boundary-scan register and pass a flush test
through the register to check the integrity of the boundary-
scan cells. The question that is raised is why do all these
additional integrity tests? If our purpose is just to test for
manufacturing defects on the test infrastructure, the IR
checkerboard test is probably sufficient. All additional
integrity tests deal with testing the functionality of the IEEE
1149.1 features on the devices. We could argue that this is
more a chip test requirement, not a board test requirement
(in fact, the same argument used earlier to explain why the
Intest instruction is not mandatory).

Most test engineers run the extra integrity tests as time
permits. These tests provide additional confidence that the
test infrastructure is healthy before using it to test other
parts of the board.

The Test Access Port (TAP)
We return now to the TAP and its controller (Figure 12). The
TAP consists of four mandatory terminals plus one optional
terminal.

Boundary-Scan Tutorial

 20

ClockDR
ShiftDR
UpdateDR
Reset*
Select
ClockIR
ShiftIR
UpdateIR
Enable

TMS

TCK

TRST* (Optional)

Test Access Port

Controller

Figure 12: TAP Controller Global View

The mandatory terminals are:

�� Test Data In (TDI): serial test data in with a default value

of 1.
�� Test Data Out (TDO): serial test data out with a default

value of Z and only active during a shift operation.
�� Test Mode Select (TMS): serial input control signal with

a default value of 1.
�� Test Clock (TCK): dedicated test clock, any convenient

frequency.

The optional terminal is:

�� Test Reset (TRST*): asynchronous TAP controller reset

with default value of 1 and active low.

TMS and TCK (and the optional TRST*) go to a finite-state
machine controller, which produces the various control
signals. These signals include dedicated signals to the IR
(ClockIR, ShiftIR, UpdateIR) and generic signals to all data
registers (ClockDR, ShiftDR, UpdateDR). The data register
that actually responds is the one enabled by the conditional

Boundary-Scan Tutorial

 21

control signals generated at the parallel outputs of the IR,
according to the particular instruction. Additionally, there are
generic Select, Reset, and Enable signals.

Figure 13 shows the state table for the TAP controller. The
value on the state transition arcs is the value of TMS. A
state transition occurs on the positive edge of TCK and
output values change on the negative edge of TCK.

T e s t - L o g i c-
R e s e t

R u n - T e s t /
I d l e Select-

DR-Scan

Capture-DR

Shift-DR

Exit1- DR

Pause-DR

Exit2- DR

Update- DR

Select-
IR-Scan

Capture- IR

Shift-IR

Exit1- IR

Pause- IR

Exit2- IR

Update-IR

1

0

1

1

1

1

1

1

1

1

1

1

111
0

0

0

0
0

0
0

0

0

0

0
0

0
0

0

11

Figure 13: TAP Controller State Table Diagram

The TAP controller initializes in the Test-Logic-Reset state
(“Asleep” state). While TMS remains a 1 (the default value),
the state remains unchanged. Pulling TMS low causes a
transition to the Run-Test/Idle state (“Awake, and do
nothing” state). Normally, we want to move to the Select-IR-
Scan state ready to load and execute a new instruction.

An additional one-one sequence on TMS will achieve this.
From here, we can move through the various Capture-IR,
Shift-IR, and Update-IR states as required. The last
operation is the Update-IR operation and, at this point, the
instruction loaded into the shift section of the IR is
transferred to the hold section to become the current
instruction. This causes the IR to be deselected as the
register connected between TDI and TDO and the data

Boundary-Scan Tutorial

 22

register identified by the current instruction to be selected as
the new target register between TDI and TDO (e.g., if the
instruction is Bypass, the Bypass register is the selected
data register). From now on, we can manipulate the target
data register with the generic Capture-DR, Shift-DR, and
Update-DR control signals.

Note that there is no master reset to the TAP controller if
the optional TRST* is not implemented. The TAP controller
is mandated to power up in the Test-Logic Reset state. If
there is a need to re-initialize the controller, it can be done
by holding TMS high and clocking TCK up to a maximum of
five clocks. In general, TMS = 0 holds the current state
whereas TMS = 1 causes a state transition. The reader is
invited to verify that from any start state, five TCKs is
sufficient to return the controller to the Test-Logic-Reset
state, given that TMS remains at logic 1.

Each of the main branches of the state table contains
additional Exit and Pause states. The Exit1 state allows a
transition from the shift operation to Update. It also allows
the controller to be placed in a Pause state. This might be
necessary if, for example, all devices have their boundary-
scan registers selected as the data registers and an
external tester pin channel is either loading or unloading test
data (e.g., as in the use of Extest to test interconnect
structures). If the length of the chained boundary-scan
registers is longer than the memory associated with the
tester channel then it will become necessary to update or
unload the content of the channel memory before resuming
the shift operation through the boundary-scan path. The
Pause state enables this action and Exit2 state allows a
return to the shift operation.

In general, a TAP controller requires four state flip-flops and
another four flip-flops to hold the values of certain output
signals. The additional next-state decoder and output
decoder logic adds another 20 to 40 gates.

Boundary-Scan Tutorial

 23

The Bypass Register
Figure 14 shows a typical design for a Bypass register. It is
a 1-bit register, selected by the Bypass instruction and
provides a basic shift function. There is no parallel output
(which means that the Update-DR control has no effect on
the register), but there is a defined effect with the Capture-
DR control — the register captures a hard-wired value of 0.
We will shortly explain the value of this.

� One-bit shift register
� Selected by the Bypass instruction
� No parallel output
� Captures a hard-wired 0
� Note: Bypass is power-up instruction

if no Identification Register present

D

Clk

Q
0

From TDI
To TDO

ShiftDR

ClockDR

Figure 14: The Bypass Register

The Identification Register
The optional Identification (Ident) register is a 32-bit register
with capture and shift modes of operation (Figure 15). The
captured 32 bits identify the device through the following
fields:
�� Bit 0 (least significant bit) is always 1.
�� Bits 1 - 11 identify the manufacturer of the device using

a compact form of the JEDEC identification code.
�� Bits 12 - 27 provide a 16-bit free format part number

field.

Boundary-Scan Tutorial

 24

�� Bits 28 - 31 provide a 4-bit free format field to specify up
to 16 different versions of the same basic device.

VersionVersion Part NumberPart Number Manufacturer
Identity

Manufacturer
Identity

4-bits
Any format

16-bits
Any format

11-bits
Coded form
of JEDEC

D

Clk

Q
ID Code bit

Shift in
Shift out

ShiftDR

ClockDR

TDI TDO
LSBLSB

1

Figure 15: Device Identification Code Structure

Once captured, the 32-bit identification code can be shifted
out through TDO for inspection. Figure 15 also shows a
possible implementation of one cell in the 32-bit register.

We will now investigate why the least significant bit (lsb) of
the Ident register is a 1 and why the Bypass register
captures a hard-wired value of 0.

Use of the lsb = 1 Feature
Consider the following field servicing scenario. A customer’s
computer system has broken down. The cause is suspected
to be a hardware fault on a particular board. There are
many variations of the board and the service engineer
needs to identify the board type and the component
versions. All the engineer knows is that there are boundary-
scan components on the board and the location of the
primary (edge-connector) TDI, TDO, TMS, TCK ports plus

Boundary-Scan Tutorial

 25

Power and Ground. The following procedure identifies the
boundary-scan components on the board and whether or
not they have Ident registers.

Step 1: Power up the board and sequence values on TMS

to enter the Select DR-Scan state. By default, the
instruction loaded into the hold stage of every
boundary-scan device on power-up must be
Idcode if the device contains an Ident register, or
Bypass if the device does not contain an Ident
register. This is mandated by the standard. This is
shown in Figure 16.

TDI

TMS

TCK

TDO

1 2 3

� Problem: determine how many devices on the board have boundary
scan; where they are in the chain; and identify those with Identification
Registers

� Solution: power-on, go to Select DR_Scan > Capture_DR > Shift_DR
� Leading 0 indicates a Bypass-only device
� Leading 1 indicates an Ident device. Next 31 bits are of interest

Figure 16: Use of the lsb = 1 Feature — Step 1

Step 2: Capture the hard-wired values (Capture-DR) in

the default selected Bypass or Ident register.

Step 3: Shift (Shift-DR) the captured values out through

the primary TDO output. See Figure 17. A leading
0 identifies a device without an Ident register. A
leading 1 identifies a device with an Ident register,
in which case the next 31 bits are of interest.

Boundary-Scan Tutorial

 26

� Clock out content of concatenated registers though TDO
� Note: front-end open TDI will feed logic 1s into the chain

� Terminate with all-1s (8 x 1s: illegal JEDEC code)

TDI

TMS

TCK

TDO

1 2 3

Logic 1

Figure 17: Use of the lsb = 1 Feature — Step 3

In the situation of a true “blind” interrogation (i.e., one in
which it is not known how many devices on the board have
IEEE 1149.1 features), the process can be terminated by
feeding in an illegal sequence through the primary TDI and
waiting for this sequence to appear at the primary TDO.
Such a sequence is seven consecutive 1s in bits 1-7 of the
manufacturer identity field. The JEDEC coding system
avoids this sequence. It is usual to add a further 0 to this
sequence just in case the primary TDI is stuck-at-1. See
Figure 17.

Boundary-Scan Register
We are now ready to take a more detailed look at the
boundary-scan cells. Boundary-scan cells are placed on the
device signal input ports, output ports, and on the control
lines of bidirectional (I/O) ports and tristate (0, 1, Z) ports.
These cells are linked together to form the boundary-scan
register. The order of linking is determined by the physical
adjacency of the pins and/or by other layout constraints.

Boundary-Scan Tutorial

 27

The boundary-scan register is selected by the Extest,
Sample/Preload, and Intest instructions.
There are many different designs for boundary-scan cells.
Figure 18 shows a simple design capable only of capture
and shift operations. Such a cell could be used on device
inputs that are especially sensitive to extra loading on the
Data_In signal e.g., a system clock. (Note: the three
mandatory instructions do not require an update operation
on the input scan cells.)

Only Capture and Shift: No update

Used on sensitive device inputs (e.g., System Clock)

1
1

G

Data_In
(PI)
ShiftDR

Scan In
(SI)
ClockDR

Data_Out
(PO)

Scan Out
(SO)

1D Q

C1

Note: Mandatory instructions do not require Update on
input scan cells.

Figure 18: Basic Boundary-Scan Cell (Input)

Figure 19 shows a more universal design for a boundary-
scan cell: it is capable of all three operations of capture,
shift, and update, and is suitable as a cell on the device
inputs or outputs. This design has separate flip-flops for
shift and hold functions. Data can be shifted through the
boundary-scan shift path without interfering with the value in
the hold section (which could be routed to the data-out port
through the output multiplexer).

Boundary-Scan Tutorial

 28

ModeShiftDR

Scan In
(SI)

ClockDR

Scan Out
(SO)

1D

C1

Q 1D

C1

Q

UpdateDR

1
1

G 1
1

G

Data_In
(PI) Data Out

(PO)Shift
Register

Parallel Output
Register

Input
Mux

Output
Mux

Figure 19: Basic Boundary-Scan Cell (Input/Output)

Figure 20 shows why a hold section might be required.
Assume that the three outputs from the boundary-scan
device are control signals to the Chip-Select (CS) controls
of three RAM devices. In the normal course of events, only
one RAM is selected to talk to the data bus. This means that
most combinations of the three CS signals are illegal.

Figure 20: A Reason for the Hold State

Boundary-Scan Tutorial

 29

It would be impossible to guard against illegal sequences if
we were passing data along the boundary-scan path without
the hold element and the output multiplexer was open to the
shifting values. If the multiplexer was open to the values
generated by the core logic, we may still have a problem if
we are not exercising tight control over the status of the
core logic. A simple solution is to include the hold section
and to use the Clamp instruction to load safe values into the
hold sections. Then, pass these values out through the
output multiplexer.

Providing Boundary-Scan Cells
Primarily, boundary-scan cells must be provided on all
device input and output signal pins, with the exception of
Power and Ground. Note that there must be no circuitry
between the pin and the boundary-scan cell with the
exception of driver amplifiers or other forms of analog
circuitry.

In the case of pin fan-in, boundary-scan cells should be
provided on each primary input to the core logic. In this way,
each input can be set up with an independent value. This
provides the maximum flexibility for Intest.

Similarly, for the case of pin fan-out: if each output pin has a
boundary-scan cell, then so Extest is able to set different
and independent values.

Where there are tristate output pins, then there must be a
boundary-scan cell on the status control signal into the
output driver amplifier. Figure 21 shows a simple example of
a tristate output pin.

Boundary-Scan Tutorial

 30

C o r e L o g i c

T D I

T C K

T M S

E x t r a B o u n d a r y-
S c a n C e l l

TDO

Figure 21: Control of Tristate Outputs

Figure 22 shows the set up for a bidirectional I/O pin. Here,
we see that three boundary-scan cells are required: one on
the input side, one on the output side, and one to allow
control of the I/O status.

C o r e L o g i c

T D I

T D O

T C K

T M S

T h r e e B o u n d a r y-S a
c e l l s p e r b i d i r e c t i o n a l pin

c n

Figure 22: Bidirectional Input/Output Pins

Boundary-Scan Tutorial

 31

Accessing Other Core-Logic Registers
The IEEE 1149.1 architecture does allow the definition and
use of “private” instructions to access any suitable internal
shift registers. An example could be an instruction InScan to
allow access to an internal scan path register via the TDI-
TDO route.

Another important optional instruction is RunBist. Because
of the growing importance of self-test structures, the
behavior of RunBist is defined in the standard. The self-test
routine must be self-initializing (i.e., no external seed values
are allowed), and the execution of RunBist essentially
targets a self-test result register between TDI and TDO.
Once the self-test routine is initiated, the TAP controller is
held in its Run-Test/Idle state for the duration of the test.
The self-test clock can either be TCK or some other suitable
and available clock.

At the end of the self-test cycle, the targeted register holds
the pass/fail result. It is important that this value is not
changed by any subsequent pulses on TCK. In this way,
parallel self-tests of different lengths on different devices on
the same board can be carried out. When the final (i.e., the
longest in run time) self-test is complete, all results can be
clocked out along the register path made up of the linked
individual result registers.

Boundary-Scan Tutorial

 32

Chapter 4: Application at the Board Level

General Strategy
As a complement to this tutorial, we will look briefly at the
three major stages of board-test strategy for a board
populated by IEEE 1149.1-compliant devices (a “pure”
boundary-scan board).

A general-purpose, three-step strategy for testing a pure
boundary-scan board is:

Step 1. Carry out a boundary-scan infrastructure test by

using either the blind interrogation technique
described earlier (pages 29-30) or through the
Capture-IR/Shift-IR operations to load and shift
the built-in checkerboard values. Further optional
infrastructure tests can be carried out if time
permits.

Step 2. Use the Extest instruction to apply stimulus and

capture responses across the interconnect
structures between the devices on the board.

This is the major application of boundary-scan
architecture and we will return to the basic
algorithms later in this tutorial.

Step 3. Carry out either a limited “existence” test on the

individual devices (using Intest) or initiate device
self-test routines (using RunBist).

At the end of Step 3, we have “tested the tester” (Step 1);
tested the regions most susceptible to assembly damage
caused by electrical, mechanical, or thermal shock (Step 2);
and tested that the right devices are in their correct
positions on the board (Step 3).

Boundary-Scan Tutorial

 33

Interconnect Test Example
Consider the simple four-net interconnect structure shown in
Figure 23. Assume both devices are IEEE 1149.1 compliant
and the left-hand device drives values into the right-hand
device. Assume further that there is an unwanted short-
circuit defect between Nets 1 and 2, and an unwanted open-
circuit defect along Net 4. How can we test for such
defects?

Net 1

Net 2

Net 3

Net 4

Chip 1 Chip 2Open

Short

Problem: How to test for the open and short faults?

Figure 23: Interconnect Testing Example

Figure 24 shows a solution. The short circuit (assumed to
behave logically like a wired-AND gate) is detected by
applying unequal logic values (i.e., logic 1 on Net 1, logic 0
on Net 2) from Chip 1 to Chip 2. The wired-AND behavior
causes Chip 2 to receive two logic 0s, allowing identification
of the defect.

Boundary-Scan Tutorial

 34

Net 1

Net 2

Net 3

Net 4

Chip 1 Chip 2Open

Short
Stimulus in Response out

Assume wired-AND

Assume stuck-at-0

1

0

1

0

0

0

Figure 24: Interconnect Testing Solution

Similarly, if the open-circuit behaves like a stuck-at-0 fault,
the defect is detected by applying a logic 1 from Chip 1 on
Net 4 and observing that Chip 2 captured a logic 0.

A question arises — can we devise a general-purpose
algorithm for creating a series of tests capable of detecting
any 2-net short circuit (of either a wired-AND or a wired-OR
nature) and any single-net open circuit (causing either a
stuck-at-1 or a stuck-at-0 fault)?

This question was answered in 1974 in connection with a
similar requirement for testing ribbon cables (Kautz, IEEE
Trans. Computers, 1974, pp. 358-363). Consider Figure 25.

This diagram shows three consecutive tests applied to Nets
1 to 4. The first test is the vertical pattern 1110; the second
is 0101; and the third is 1001. Think about the patterns
“horizontally”; that is, the sequence 101 applied to Net 1,
and so on. We can consider 101 to be a binary code
assigned to Net 1. Similarly, the three tests define other
horizontal codes for Nets 2, 3, and 4. Kautz showed that a
sufficient condition to detect any pair of short-circuited nets

Boundary-Scan Tutorial

 35

was that the “horizontal” codes must be unique for each
net1. This means that the total number of bits in each code
(the number of tests) is given by ceil [log2(N)], where N is
the number of nets and ceil means ceiling (the upper integer
value of the logarithm). This is illustrated in Figure 25.

Open

Short

Assume wired-AND

Assume stuck-at-0

101

011

001

110

001

001

001

000

?

Net 1

Net 2

Net 3

Net 4

Chip 1 Chip 2

Figure 25: Detecting the Fault

In Figure 25, each horizontal stimulus code constructed
from the three vertical tests is different. The response codes
on nets 1 and 2 are incorrect because of the short circuit
between these two nets.

At this point, we can ask, why use a three-bit code? With
four nets, ceil [log2 (N)] is 2 and each net could be assigned
a unique two-bit code. This is true, but the additional
requirement to cover single stuck-at-1 and stuck-at-0 faults
precludes the all-1 and all-0 codes. A stuck-at-1 fault would
never be detected if the input code is all 1s: similarly for the
stuck-at-0 fault and the all-0 code. In effect, the all-1s and
all-0s become forbidden codes.

1 If each net has a unique code, at some point any two nets have complementary

stimulus values assigned. This is a necessary and sufficient condition to detect
a short circuit of type wired-AND or wired-OR.

Boundary-Scan Tutorial

 36

This means that the total number of bits in each code to
satisfy the uniqueness property and to exclude the two
forbidden codes is given by ceil [log2 (N+2)] where the “+2”
represents the two “virtual” nets with the all-0 and all-1 code
assignments. This results in a three-bit code for the four
nets in Figure 25.

Now consider the effect of applying these codes to the four-
net infrastructure. The response codes on Nets 1 and 2 are
different to their respective input stimulus codes, but they
are both the same code (001). From this information, we
deduce:

1. there is a short-circuit fault between Nets 1 and 2
2. the short-circuit is a “wired-AND” type

Unfortunately, this diagnosis may not be fully correct. Net 3,
which is not short-circuited, was tested by the code 001.
This code is the same as the faulty response code, and
although net 3 response is correct in terms of being the
same as the stimulus code, it could be 001 because net 3 is
also part of the short circuit problem (i.e., nets 1, 2 and 3
could all be shorted together).

This diagnostic ambiguity is an example of the aliasing
syndrome of short-circuit faults. There are ways of
overcoming this syndrome (and other syndromes), but the
solutions are beyond the scope of this tutorial. One
additional test to reduce the ambiguity is 0011 (see Figure
26). Basically, the fourth test splits the known short circuit
pair (net 1, net 2) from the possible short-circuit candidate
(net 3).

Boundary-Scan Tutorial

 37

Net 1

Net 2

Net 3

Net 4

Chip 1 Chip 2Open

Short

Assume wired-AND

Assume stuck-at-0

0 101

0 011

1 001

1 110

0 001

0 001

1 001

0 000

Suspect
wired-AND

short

Suspect
open

Figure 26: Locating the Fault

To conclude this example, notice that the s-a-0 open circuit
on net 4 is detected and located cleanly by the all-0
response code. This code is one of the two forbidden codes
and cannot be aliased to any other code associated with a
defect-free interconnect.

Practical Aspects of Using Boundary-Scan
Technology

Handling Non-Boundary-Scan Clusters
In reality, boards are populated with both boundary-scan
(BScan) and non-boundary-scan (non-BScan) devices. The
question arises, “what can we do to test the presence,
orientation and bonding of the non-boundary-scan devices?”
The answer to the question depends, in part, on the degree
of controllability and observability afforded to the non-BScan
devices through the boundary-scan registers of the BScan
devices.

Figure 27 shows a “cluster” of three non-BScan devices
surrounded by three BScan devices. The boundary-scan

Boundary-Scan Tutorial

 38

registers in U1, U2, U3 can be used to drive test-pattern
stimuli into the non-BScan cluster, and to observe the
cluster responses but the difficulty will be to control and
observe the truly buried nets inside the cluster (e.g.,
between U4 and U5).

U1

U3

U2

U4

U5
U6

Real Nail

Figure 27. Handling Non-BScan Clusters

Given that we are not testing the full functionality of the non-
BScan devices — only their presence, orientation and
bonding — one solution is to develop a suitable set of tests
for the non-BScan cluster that are applied from the
boundary-scan driver cells and which drive signal values
along the buried nets, targeted on opens and shorts. The
responses are propagated out to the boundary-scan
receiver cells.

For clusters of relatively simple non-BScan devices,
generating these tests may not be too difficult. For clusters
of complex non-BScan devices, generating the tests may
become very difficult and there are no automatic pattern-
generator tools to help the board test programmer.

Boundary-Scan Tutorial

 39

Consequently, an alternative solution is to make use of real
nails to access the buried nets, as shown in the diagram.
Clearly, these nets have to be brought to the surface of the
board (to allow physical probing) and the cost of test will
increase (because of the extra cost of the bed-of-nails
fixture), but this may be the only way to solve the problem. A
solution that combines the virtual access of boundary scan
and the real access of a bed-of-nails system is generally
known as a Limited Access solution.

Access to RAM Arrays
Many boards contain arrays of Random Access Memory
(RAM) devices (see Figure 28). RAMs are not usually
equipped with boundary scan and so they too present
manufacturing-defect testing challenges. In a way, an array
of RAMs is a special case of a cluster of non-BScan
devices.

Core Logic

Core LogicCore Logic

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

Figure 28. Testing a RAM Array Via Boundary Scan

Boards that contain RAMs typically also contain a
programmable device, such as a microprocessor. The usual
practice is to use the microprocessor to test the presence,

Boundary-Scan Tutorial

 40

orientation and bonding of the RAM devices (i.e., the
microprocessor becomes an on-board tester). This is OK as
long as the microprocessor exists on the board. If there is
no such device, then the RAMs can be tested for
manufacturing defects through the boundary-scan registers
of BScan devices as long as the BScan devices have
boundary-scan register access to the control, data and
address ports of the RAMs. Test times will be slow but the
number of tests are not that great given that the purpose of
the tests is to identify any opens or shorts on the RAM pins.
Suitable tests can be derived from the classical walking-
1/walking-0 patterns or from the ceil [log2 (N+2)] patterns
described earlier.

Other Issues of BScan-to-Non-BScan Interfacing
Figure 29 illustrates some of the other issues of interfacing
between BScan and non-BScan devices.

IOZ IOZIOZ

O_Enab

Bus

O_Enab

O_Enab

U1 U2 U3

U4

n1 n2 n3 n4 n5 n6

n7

n8 n9

n10

n11 n12

n13

n14

Figure 29. BScan-to-non-BScan Interface

Consider what happens when we try to set up interconnect
tests between U1’s bidirectional pins (marked IOZ on nets
n1, n2) and U3’s bidirectional pins (marked IOZ on nets n5,

Boundary-Scan Tutorial

 41

n6) via the bus. First, we have to determine the exact nature
of the boundary-scan cells on U1 and U3 IOZ pins. One set
has to be set up as drivers and the other set as receivers.
Assume we specify U1’s pins to be the drivers and U3’s pins
to be the receivers. The interconnect test-pattern generator
will compute tests from U1 to U3 based on the standard
algorithm.

To set U1’s pins into driver mode, we need to control net n7
(U1 O_Enab) to the appropriate value. n7 is directly
controllable so this will not be a problem. Now consider the
O_Enab pin of U3. The value on this pin needs to be set to
the appropriate level to make U3’s bidirectional pins behave
as receivers. The control for U3 O_Enab comes from the
non-BScan device U2, along net n9. n9 is not directly
controllable so we have a problem of trying to find out what
to do on the input side of U2 to set U3’s O_Enab to the
correct value. If the inputs to U2 can be controlled by a
BScan device (e.g., by the boundary-scan register of U1),
then we can set fixed values in U1’s output scan cells to
hold U2 inputs to set U2’s output values to the values
required by U3’s O_Enab input. The values held in U1’s
output scan cells are known as constraints, overriding any
other values that might be generated by the interconnect
test-pattern generator. Basically, the requirement for a
constraint generates a mask that ensures that a particular
output driver scan cell is always updated with the same
constraint value.

Now return to the U1-to-U3 interconnect tests. The board-
level netlist will identify U2 as another device with access to
the bus. Before tests can be applied between U1 and U3,
we first have to know the nature of the pins of U2 that are
connected to the bus. Are they inputs only (I), outputs only
(O), outputs with a high-Z state OZ), or full bidirectionals
(IOZ)? Eventually, we might need to know the input-output
nature of every pin on this non-BScan device. This data,
sometimes called characteristic data, is easily created but
absolutely necessary if we are to avoid potentially
dangerous situations during interconnect test. For example,
if U2’s pins are IOZ and they are in their output-drive state,

Boundary-Scan Tutorial

 42

then tests between U1 and U3 can cause damage to U2
through back-driving (bus contention). As a result, we need
to set yet another constraint value into the boundary-scan
cell in U1 that controls the value on U2’s O_Enab pin, along
net n8.

Now consider net n10. This net connects between the two
BScan devices, U1 and U3, and so is a candidate for
interconnect testing. Note however that the net also
connects to the non-BScan device, U2. Again, we need to
know the nature of the U2 pin: is it an input or an output? If
it is an input, then there is no problem with driving between
U1 and U3. If it is an OZ pin, then, again, we would need to
set it into its high-Z safe state before applying the
interconnect test on n10.

Finally, consider the connections n11 and n12 between U1
and U3 via U4. This appears to be a BScan-to-non-BScan-
to-BScan series of connections and so is not amenable to
interconnect testing between U1 and U3. But, we note that
U4 has a very special logical property: it is transparent to
digital signals. If we knew about this property, we could
basically ignore its presence and treat n11 and n12 as a
single connection between U1 and U3, thereby increasing
defect coverage. In general, identifying transparent devices
(e.g., series resistors, non-inverting line drivers) or devices
with simple transparent modes (e.g., multiplexers), will
enhance the defect coverage. In the case of a multiplexer,
we need to control the control signals to select a particular
input to pass through to the output. Constraint values can
be used to achieve this.

The bottom line on all this is that most of the time spent in
preparing a board-level test program is spent on the BScan-
to-non-BScan interface: identifying and solving potential
problems, as discussed above. The more boundary-scan
devices there are on the board, as a percentage of all the
digital devices on the board, the easier it becomes.

Boundary-Scan Tutorial

 43

Assembling the Final Test Program
Figure 30 summarizes the major stages of assembling a
final test program.

Create and verify hierarchical database
(device, module, board, system)

Create and verify hierarchical database
(device, module, board, system)

BSDL Files
Board Netlist

BSDL Files
Board Netlist

Cluster Tests
Binary
Macro Language

Cluster Tests
Binary
Macro Language

Fault Coverage
Report
Final Tests

Fault Coverage
Report
Final Tests

Results: Display
and Debug Tools

Results: Display
and Debug Tools

Non-BS Device
Characteristic
Data; I, O, OZ, IOZ
Trans, Constraints

Non-BS Device
Characteristic
Data; I, O, OZ, IOZ
Trans, Constraints

Assemble Test Program:
Integrity: Power-On Scan_DR, IR, BS Reg
Interconnect: Enhanced Binary Count
Cluster: Simulation Patterns, Manual
RAM Array: Slow-Speed, At-Speed
Diagnostics: BIST, Scan-Thru-TAP, Intest

Assemble Test Program:
Integrity: Power-On Scan_DR, IR, BS Reg
Interconnect: Enhanced Binary Count
Cluster: Simulation Patterns, Manual
RAM Array: Slow-Speed, At-Speed
Diagnostics: BIST, Scan-Thru-TAP, Intest

Verify/Apply to Board
Detect: Go/No Go
Locate:Miscompare Data, Net, Pin

Verify/Apply to Board
Detect: Go/No Go
Locate:Miscompare Data, Net, Pin

Figure 30. Assembling a Test Program: Tool Flow

First, the device BSDL files (see later) and board netlist data
is used to compile a database. non-BScan characteristic
data is also assembled ready to be used by the various
pattern generators. The test program itself is composed of
several segments:

�� Board-level test infrastructure integrity test: device TDO-

to-TDI interconnects, distribution of TMS, TCK and
TRST*, if present. Typically, these tests use both a DR-
Scan cycle and an IR-Scan cycle. The former is an
application of the blind interrogation test whereas the
latter uses the 01 captured into the Instruction Register,
as described earlier.

�� Full Enhanced Binary Count tests between all boundary-
scan interconnects, setting non-BScan devices into safe

Boundary-Scan Tutorial

 44

states and/or using non-BScan outputs to assert control
over BScan devices where necessary.

�� Tests to be applied to non-BScan clusters via a
combination of BScan devices, real nails (if available),
and the normal board edge-connector signals. These
tests may be input in a simple one/zero format, or by
using a higher-level test language, such as a macro
language or C++.

�� Tests to be applied to on-board RAM devices, either via
an on-board microprocessor or via the boundary-scan
registers of the BScan devices.

Diagnostics applied to production boards may then make
use of internal design-for-test structures such as internal
scan (often called Scan-Thru-TAP), Built-In Self Test or
simply through the InTest Instruction, if available. The final
test results are displayed to the user through an interface
which allows line-by-line real-time debug, or by means of a
graphical display of applied stimulus and captured test
waveforms.

Tester Hardware
Modern low-cost board testers for boards populated with
boundary-scan devices are based on a Personal Computer
(see Figure 31). The drive/sense capability of the PC is
enhanced through a controller card fitted either into an
expansion slot (PC-AT, PCI or VXI) or into a PC Card slot,
connecting to the board-under-test via a signal interface
pod. TCK speeds are generally in the region of 10 MHz to
25 MHz, but can be higher. Additional driver/sensors are
often available to provide direct control and observe on
selected edge-connector positions (e.g., control a board
Master Reset signal). The stimulus/response patterns
themselves, along with the correct value-changes on TMS,
are stored in RAM devices mounted on the controller card.
These devices form a hardware buffer to hold applied
stimulus values and collect actual response values for
comparison with the expected values. Overall, the test-
preparation and test-application software in the PC is
controlled under Windows 98/2000 or Windows NT.

Boundary-Scan Tutorial

 45

PC: Windows 98/2000 or NT

Internal controller card
or PCMCIA card

Interface pod
(TAP interface + PIO)

Board-Under-Test

Figure 31. Tester Hardware

Such board testers are low-cost, compared to traditional in-
circuit testers, and very portable, opening up the possibility
to make use of the test program in other test requirements
on the boards (e.g., in multi-board system integration and
debug, and in field service).

Boundary-Scan Tutorial

 46

Chapter 5: Related Standards
Several data formats have emerged to make IEEE 1149.1
successful and well-supported by tools. This chapter
discusses the most widely accepted data formats that
support IEEE 1149.1 — BSDL, HSDL, and SVF.

Boundary-Scan Description Language (BSDL)
This section discusses the most popular data format for
describing how IEEE 1149.1 was implemented in a device
— BSDL, or Boundary-Scan Description Language.

What Is BSDL?
Since 1990 when the IEEE 1149.1 standard was approved,
implementation of the standard has accelerated. As more
people became aware of and used the standard, the need
for a standard method for describing IEEE 1149.1-
compatible devices was recognized. The IEEE 1149.1
working group established a subcommittee to develop a
device description language to address this need.

The subcommittee has since developed and approved an
industry standard language called Boundary-Scan
Description Language (BSDL). BSDL is a subset of VHDL
(VHSIC Hardware Description Language) that describes
how IEEE 1149.1 is implemented in a device and how it
operates. BSDL captures the essential features of any IEEE
1149.1 implementation. BSDL was approved in 1994 as
IEEE Std.1149.1b.

One of the major uses of BSDL is as an enabler for the
development of tools to automate the testing process based
on IEEE 1149.1. Tools developed to support the standard
can control the TAP (Test Access Port) if they know how the
boundary-scan architecture was implemented in the device.
Tools can also control the I/O pins of the device. BSDL
provides a standard machine and human-readable data
format for describing how IEEE 1149.1 is implemented in a
device.

Boundary-Scan Tutorial

 47

How BSDL is Used
Many IEEE 1149.1 tools on the market support BSDL as a
data input format. These tools offer different capabilities to
persons implementing IEEE 1149.1 into their designs
including board interconnect Automatic Test Pattern
Generation (ATPG) and Automatic Test Equipment (ATE).

When you use tools that support BSDL, you can often
obtain BSDL from your semiconductor vendor. This can
result in significant time and cost savings.

Teradyne estimates that to create in-circuit test patterns for
a leading microprocessor normally can require as much as
seven weeks time:

�� One week to study the device
�� Four weeks to develop in-circuit test patterns
�� Two weeks to verify the patterns on ATE

If the microprocessor supports IEEE 1149.1, and the BSDL
is supplied by the vendor, the time to develop in-circuit test
patterns is less than two hours using today's tools.

Elements of BSDL
A BSDL description for a device consists of the following
elements:

�� Entity descriptions
�� Generic parameter
�� Logical port description
�� Use statements
�� Pin mapping(s)
�� Scan port identification
�� Instruction Register description
�� Register access description
�� Boundary Register description

Boundary-Scan Tutorial

 48

Entity Descriptions — The entity statement names the
entity, such as the device name (e.g., SN74ABT8245). An
entity description begins with an entity statement and
terminates with an end statement.

entity XYZ is
{statements to describe the entity go here}
end XYZ

Generic Parameter — A generic parameter is a parameter
that may come from outside the entity, or it may be
defaulted, such as a package type (e.g., “DW”).

generic (PHYSICAL_PIN_MAP : string := “DW”);

Logical Port Description — The port description gives logical
names to the I/O pins (system and TAP pins), and denotes
their nature such as input, output, bidirectional, and so on.

port (OE:in bit;

Y:out bit_vector(1 to 3);
A:in bit_vector(1 to 3);
GND, VCC, NC:linkage bit;
TDO:out bit;
TMS, TDI, TCK:in bit);

Use Statements — The use statement refers to external
definitions found in packages and package bodies.

use STD_1149_1_1994.all;

Pin Mapping(s) — The pin mapping provides a mapping of
logical signals onto the physical pins of a particular device
package.

attribute PIN_MAP of XYZ : entity is
PHYSICAL_PIN_MAP;
constant DW:PIN_MAP_STRING:=
“OE:1, Y:(2,3,4), A:(5,6,7), GND:8, VCC:9, “&

“TDO:10, TDI:11, TMS:12, TCK:13, NC:14”;

Boundary-Scan Tutorial

 49

Scan Port Identification — The scan port identification
statements define the device's TAP.

attribute TAP_SCAN_IN of TDI : signal is TRUE;
attribute TAP_SCAN_OUT of TDO : signal is TRUE;
attribute TAP_SCAN_MODE of TMS : signal is TRUE;
attribute TAP_SCAN_CLOCK of TCK : signal is (50.0e6,

BOTH);

Instruction Register Description — The Instruction Register
description identifies the device-dependent characteristics of
the Instruction Register.

attribute INSTRUCTION_LENGTH of XYZ : entity is 2;
attribute INSTRUCTION_OPCODE of XYZ : entity is
“BYPASS (11), “&
“EXTEST (00), “&
“SAMPLE (10) “;
attribute INSTRUCTION_CAPTURE of XYZ : entity is

“01”;

Register Access Description — The register access defines
which register is placed between TDI and TDO for each
instruction.

attribute REGISTER_ACCESS of XYZ : entity is
“BOUNDARY (EXTEST, SAMPLE), “&
“BYPASS (BYPASS) “;

Boundary Register Description — The Boundary Register
description contains a list of boundary-scan cells, along with
information regarding the cell type and associated control.

attribute BOUNDARY_LENGTH of XYZ : entity is 7;
attribute BOUNDARY_REGISTER of XYZ : entity is
“0 (BC_1, Y(1), output3, X, 6, 0, Z), “&
“1 (BC_1, Y(2), output3, X, 6, 0, Z), “&
“2 (BC_1, Y(3), output3, X, 6, 0, Z), “&
“3 (BC_1, A(1), input, X), “&
“4 (BC_1, A(2), input, X), “&
“5 (BC_1, A(3), input, X), “&
“6 (BC_1, OE, input, X), “&
“6 (BC_1, *, control, 0)”;

Boundary-Scan Tutorial

 50

Hierarchical Scan Description Language (HSDL)
This section discusses a data format for describing how
IEEE 1149.1 was implemented at the board or system level
— HSDL, or Hierarchical Scan Description Language.

What Is HSDL?
Texas Instruments developed the Hierarchical Scan
Description Language (HSDL) to complement BSDL, using
the same subset of VHDL statements as BSDL. ASSET
InterTech, Inc. is the contact point for maintaining the HSDL
standard and is directly responsible for additions or changes
to the standard.

HSDL picks up where BSDL stops to describe additional
attributes of IEEE 1149.1 devices and how IEEE 1149.1
devices are connected at the board and system level.

HSDL uses the BSDL entity and package in new ways.
Entities in HSDL are used to describe modules as well as
devices. A module is any level of architecture above the
device level, including boards, multichip modules,
backplanes, subsystems, and systems. In addition, HSDL
provides two new packages used to indicate that an entity is
an HSDL device or module.

BSDL is well suited for describing how IEEE 1149.1 is
implemented in a device, but stops there. HSDL provides a
method for describing how IEEE 1149.1 devices are
connected at the board, module, and system levels. HSDL
serves three needs not addressed by BSDL.

�� Description of the test bus interconnections of IEEE

1149.1 at the board or module level
�� Description of boards with dynamic and reconfigurable

architectures
�� Ease-of-use and risk reduction improvement during

interactive design debug and verification

Boundary-Scan Tutorial

 51

In this way, BSDL and HSDL can be used together to obtain
a full description of the unit under test (UUT). In addition, a
basic device-level BSDL file can be augmented with
appropriate HSDL statements to ease its use for interactive
design debug of the UUT.

HSDL Module Statements
HSDL module statements use much of the same syntax as
BSDL. New statements have been added to describe the
members and scan paths of the module and to simplify
interactive use.

�� Entity descriptions
�� Generic parameter
�� Logical port description
�� Use statements
�� [Optional module descriptions]
�� [Optional port description(s)]
�� Pin mapping(s)
�� Scan port identification
�� [Optional member description(s)]
�� [Optional bus description(s)]
�� Path description
�� [Optional member connections]
�� [Optional constraint description(s)]
�� [Optional design warning]

Entity Descriptions — The entity statement names the
entity, such as the module name (e.g., BOARD). An entity
description begins with an entity statement and terminates
with an end statement.

entity BOARD is
{statements to describe the entity go here}
end BOARD;

Generic Parameter — A generic parameter may come from
outside the entity or it may be defaulted, such as a package
type (e.g., “UNDEFINED”).

generic (PHYSICAL_PIN_MAP : string := (“UNDEFINED”)

Boundary-Scan Tutorial

 52

Logical Port Description — The port description gives logical
names to the I/O pins (system and TAP pins), and denotes
their nature such as input, output, bidirectional, and so on.

port (TDI:in bit;

TDO:out bit;
TMS:in bit;
TCK:in bit);

Use Statements — The use statement refers to external
definitions found in packages and package bodies.

use STD_1149_1_1994.all;
use HSDL_module.all;

Pin Mapping(s) — The pin mapping provides a mapping of
logical signals onto the physical pins of a particular entity.

attribute PIN_MAP of BOARD : entity is
PHYSICAL_PIN_MAP;
constant PINOUT1 : PIN_MAP_STRING :=
“TDI:1, TDO:2, TMS:3, TCK:4, GND:5”;

Scan Port Identification — The scan port identification
statements define the entity's TAP.

attribute TAP_SCAN_IN of TDI : signal is TRUE;
attribute TAP_SCAN_OUT of TDO : signal is TRUE;
attribute TAP_SCAN_MODE of TMS : signal is TRUE;
attribute TAP_SCAN_CLOCK of TCK : signal is (5.0e6,

LOW);

Members Description (Optional) — Members represent
devices or other modules that are on the module. Usually
members represent components, but some boards may
contain scannable daughtercards, card slots, or other sub-
assemblies that require modules to describe them.
attribute MEMBERS of BOARD : entity is
“U1 (XYZ1, DW),”&
“U2 (XYZ2, DW), “;

Boundary-Scan Tutorial

 53

Bus Composition (Optional) — Buses in an HSDL module
can be built of module buses, member module buses,
member device buses, and member device test registers.

attribute BUS_COMPOSITION of BOARD : entity is
“bus1[4] (U1.Boundary[3,0]), “&
“bus2[4] (U2.Boundary[3,0]), “;

Path Description — Module paths are intended to describe
the netlist of TAP signals (scan paths) on the board.

constant boardpath1 : STATIC_PATH :=
“U1, U2”;
end BOARD;

For a complete specification of the HSDL language contact
ASSET InterTech or your local ASSET representative.

Serial Vector Format (SVF)

What Is SVF?
Serial Vector Format, commonly referred to as SVF, was
jointly developed by Texas Instruments and Teradyne in
1991. ASSET InterTech, Inc. is the contact point for
maintaining the SVF standard and is directly responsible for
additions or changes to the standard.

SVF is a standard ASCII format for expressing test patterns
that represent the stimulus, expected response, and mask
data for IEEE 1149.1-based tests. The need for SVF arose
from the desire to have vendor-independent IEEE 1149.1
test patterns that are transportable across a wide selection
of simulation software and test equipment — from design
verification through field diagnostics.

Boundary-scan test execution is controlled by the
sequencing of TAP signals on the pins of the devices. Each
device's behavior is determined solely by the states of its
TAP pins. Boundary-scan tools must maintain knowledge of
the sequences required to exert certain behaviors within a

Boundary-Scan Tutorial

 54

device and where that device is located down the serial
scan path.

SVF controls the IEEE 1149.1 test bus using commands
that transition the TAP from one steady state to another.
Rather than describe the explicit state of the IEEE 1149.1
bus on every TCK cycle, SVF describes it in terms of
transactions conducted between stable states. For instance,
the process of scanning in an instruction is described
merely in terms of the data involved and the desired stable
state to enter after the scan has been completed.

The states such as Capture, Shift, and Update are inferred
rather than explicitly represented. The data to be scanned
in, expected data out, and compare mask are all grouped in
an easily understandable manner. A command is provided
to support deterministic navigation of TAP states where
required.

In addition to supporting a higher-level depiction of scan
operations, SVF also supports combined serial and parallel
operations. This allows SVF to accommodate ATE
environments where some stimulus/response is handled via
parallel I/O, and serial signals are accessed via an IEEE
1149.1-control environment.

SVF also supports the concept of scan offsets. Offsets allow
a test to be applied to a component or cluster of logic
embedded in the middle of a scan path. For example,
assume a device exists in multiple instances on a board.
Serially applied tests were generated by the designer and
are available in SVF format. To reuse this test, it is
necessary to put all other devices on the scan path into
bypass mode. The IEEE 1149.1 test controller must
therefore comprehend the number of Instruction Register
bits before and after the target device. Once in bypass, the
devices introduce Data Register bits before and after the
target device.

SVF allows a header and trailer to be defined once, which
maintains the Instruction Register and Data Registers of the
non-targeted devices in the desired bypass state. No

Boundary-Scan Tutorial

 55

modifications are required to the SVF for the device. If the
same test was targeted towards another device downstream
in the scan path, this would be accommodated by changing
the headers and trailers.

The offset approach is capable of installing any Instruction
and Data Register stimulus, provided these values are
constant for the entire process of applying the SVF device
sequence.

SVF Structure
The SVF file is defined as an ASCII file that consists of a set
of SVF statements. Statements are terminated by a
semicolon (;) and may continue for more than one line. The
maximum number of ASCII characters per line is 256. SVF
is not case sensitive, and comments can be inserted into an
SVF file after an exclamation point (!) or a pair of slashes
(//).

Each statement consists of a command and parameters
associated with that specific command. Commands can be
grouped into three types: state commands, offset
commands, and parallel commands.

State Commands
State commands are used to specify how the test
sequences traverse the IEEE 1149.1 TAP state machine.
The following state commands are supported:

�� SDR — Scan Data Register
�� SIR — Scan Instruction Register
�� ENDDR — Define end state of DR scan
�� ENDIR — Define end state of IR scan
�� RUNTEST — Enter Run-Test/Idle state
�� STATE — Go to specified stable state
�� TRST — Drive TRST line to the designated level

SDR performs an IEEE 1149.1 Data Register scan. SIR
performs an IEEE 1149.1 Instruction Register scan. ENDDR
and ENDIR establish a default state for the bus following
any Data Register scan or Instruction Register scan,
respectively. RUNTEST goes to Run-Test/Idle state for a

Boundary-Scan Tutorial

 56

specific number of TCKs. For each of the above commands,
a default path through the state machine is used. Each of
these commands also terminates in a stable, nonscannable
state.

STATE places the bus in a designated IEEE 1149.1 stable
state. TRST activates or deactivates the optional test reset
signal of the IEEE 1149.1 bus.

Offset Commands
Offset commands allow a series of SVF commands to be
targeted towards a contiguous series of points in the scan
path. Examples would be a sequence for executing self-test
on a device, or a cluster test where all devices involved in
the cluster test are grouped together. The following offset
commands are supported:

�� HDR — Header data for data bits
�� HIR — Header data for instruction bits
�� TDR — Trailer data for data bits
�� TIR — Trailer data for instruction bits

HDR specifies a particular pattern of data bits to be padded
onto the front of every data scan. HIR specifies the same for
the front of every Instruction Register scan. These patterns
need only be specified once and are included on each scan
unless changed by a subsequent HDR, HIR, TDR, or TIR
command.

Parallel Commands
Parallel commands are used to map and apply the following
commands:

�� PIO — Specifies a parallel test pattern
�� PIOMAP — Designates the mapping of bits in the PIO

 command to logical pin names

Parallel commands allow SVF to combine serial and parallel
sequences. PIOMAP commands are used by parallel I/O
controllers to map data bits in the command into parallel I/O
channels using the ASCII logical pin name as a reference.
The PIO command specifies the execution of a parallel

Boundary-Scan Tutorial

 57

pattern application/sample. SVF does not specify any other
properties of parallel I/O such as drive, levels, or skew.

Default State Transitions
SVF uses names for the TAP states that are similar to the
IEEE 1149.1 TAP state names. Following is a list of SVF
equivalent names for the TAP states.

IEEE 1149.1 TAP State Name [SVF TAP State Name]

�� Test-Logic-Reset [RESET]
�� Run-Test/Idle [IDLE]
�� Select-DR-Scan [DRSELECT]
�� Capture-DR [DRCAPTURE]
�� Shift-DR [DRSHIFT]
�� Pause-DR [DRPAUSE]
�� Exit1-DR [DREXIT1]
�� Exit2-DR [DREXIT2]
�� Update-DR [DRUPDATE]
�� Select-IR-Scan [IRSELECT]
�� Capture-IR [IRCAPTURE]
�� Shift-IR [IRSHIFT]
�� Pause-IR [IRPAUSE]
�� Exit1-IR [IREXIT1]
�� Exit2-IR [IREXIT2]
�� Update-IR [IRUPDATE]

The following list identifies sample default paths taken when
transitioning from one state to a specified new state. For
example, if the current state is RESET and you select
DRPAUSE as the end state, the TAP moves from RESET
through IDLE, DRSELECT, DRCAPTURE, DREXIT1 to
DRPAUSE. You only have to specify the current and end
states and not each intermediate step.

Boundary-Scan Tutorial

 58

Stable State Path Examples
Current State End State State Path
RESET RESET RESET
RESET IDLE RESET
 IDLE
RESET DRPAUSE RESET
 IDLE
 DRSELECT
 DRCAPTURE
 DREXIT1
 DRPAUSE
RESET IRPAUSE RESET
 IDLE
 DRSELECT
 IRSELECT
 IRCAPTURE
 IREXIT1
 IRPAUSE

SVF Example
The following is an example SVF file:
! Begin Test Program
! Disable Test Reset line

TRST OFF;
! Initialize UUT

STATE RESET;
! End IR scans in DRPAUSE

ENDIR DRPAUSE;
! 24 bit IR header

HIR 24 TDI (FFFFFF);
! 3 bit DR header

HDR 3 TDI (7) TDO (7) MASK (0);
! 16 bit IR trailer

TIR 16 TDI (FFFF);
! 2 bit DR trailer

TDR 2 TDI (3);
! 8 bit IR scan, load BIST seed

SDR 16 TDI (ABCD);
! RUNBIST for 95 TCK Clocks

RUNTEST 95 TCK ENDSTATE IRPAUSE
! 16 bit DR scan, check BIST status

SDR 16 TDI (0000) TDO (1234) MASK (FFFF);
! Enter Test-Logic-Reset

STATE RESET;
! End Test Program

Boundary-Scan Tutorial

 59

The test begins by deasserting TRST. The DRPAUSE state
is established as the default end state for instruction scans
and data scans. Twenty-four bits of header and sixteen bits
of trailer data are specified for Instruction Register scans.
No status bits are checked. Three bits of header data and
two bits of trailer data are specified for Data Register scans.

In this example, a single device in the middle of the scan is
targeted. Notice from the 24-bit IR header (3x8-bit IR) and
the 3-bit DR header (3x1-bit DR) that the targeted device
has three devices before it in the scan path. From the 16-bit
IR trailer (2x8-bit IR) and the 2-bit DR trailer (2x2-bit DR),
the targeted device has two devices following it in the scan
path. After the header and trailer offsets are established, all
subsequent scans are the concatenation of the header,
scan data, and trailer bits. The targeted device supports
BIST, which is initialized by scanning a hex ABCD into the
selected Data Register. The BIST in the targeted device is
executed by entering the Run-Test/Idle state for 95-clock
cycles. Next, the BIST result is scanned out and the status
bits compared against a deterministic value to determine
pass/fail.

Boundary-Scan Tutorial

 60

Chapter 6: Boundary-Scan Tools
To complete this tutorial, we will turn our attention to what
software tools are required in order to use boundary-scan
technology for interconnect testing and other design debug
and diagnostic operations on devices, boards, and systems.

Product Life Cycle Issues
Reaping the full value from your boundary-scan investment
requires the use of a toolset that meets your testing and
debug needs during the entire product life cycle. Because of
the common and simple fixturing requirements of boundary-
scan designs, you can now use a common toolset during all
phases of the product life cycle. However, the toolset should
also offer features to meet your specific needs for each
phase of the product life cycle.

The toolset you choose should meet the needs for major
phases of the product life cycle, including design debug,
manufacturing test, and field test and repair. In addition,
tools used during the manufacturing test process should
also meet the needs for its four subprocesses: vector
creation, test program creation, test program execution, and
diagnosis. A discussion of the objectives of each process
follows.

Design Debug
Design Debug is the process of taking an unknown product
and ensuring that it is functioning properly. Often, the
product in question is one of a limited number of products
built in order to prove out the functional design of the
system; these are called prototype products or
prototypes. Even though the goal of this process is to
determine if the prototype system functions as expected, the
design engineer must first identify and repair any structural
problems caused by incorrect physical construction of the
product, e.g., solder globs that short two adjacent pins on a
device. In this sense, the design engineer must first perform
the manufacturing test process in order to complete the

Boundary-Scan Tutorial

 61

debugging process. Completion of the structural and
functional testing involves performing the test creation
process.

Manufacturing Test
The goals of this process are to determine if any errors were
made in the manufacturing process of the UUT and if the
unit being tested functions as specified and verified during
the design debug process.

Vector Creation
The focus of this subprocess is the creation and verification
of the test vectors required to meet the test objectives for
the current project. The tests that can be developed fall into
two major categories: structural or functional. The goal of
structural tests is identifying structural problems caused by
incorrect physical construction of the product, e.g., solder
globs that short two adjacent pins on a device. Functional
tests attempt to verify that the product functions as expected
under specified stimulus. In order to do functional tests, the
product must usually be free from any structural defects.
During the test vector verification stage of this subprocess,
a known product should be used in order to detect any
issues with the test vectors themselves.

Test Program Development
The goal of this subprocess is to provide an executable
software program, including test vectors, to apply the
appropriate boundary-scan tests and, in the case of a test
failure, determine what action should be taken with respect
to the failed product. This software program is called a test
program. Once available, the test program is installed on
the test machines on the manufacturing floor and executed
by the test operator on products as they pass through the
manufacturing line.

There is a wide range of capabilities that might be placed
into a test program. At one end of the scale, the test
program may simply be a batch file that sequentially
executes the same test on each product without requiring

Boundary-Scan Tutorial

 62

any interaction with the operator. In this case, the test
program may only provide textual information to the
operator on the results of the test application as a
PASS/FAIL message with instructions to remove the bad
product from the manufacturing line. At the other end of the
scale, the test program may involve a sophisticated
graphical user interface, which requires significant decision
making on the test operator’s part to complete the test and
provide significant diagnostic information to the test operator
as to what is wrong with the product being tested.

Another consideration in this subprocess is the need to have
structural and functional tests to complete testing of the unit.
A concern arises because sometimes the test operator must
use multiple test tools each tuned for a particular test type.

Test Program Execution
This subprocess involves the actual execution of the
appropriate test vectors on products as they move through
the manufacturing line. This subprocess also involves
determining what action to take when a product fails a
specific test. This test execution and diagnosis is controlled
by the test program. The person who executes this
subprocess is called the test operator.

Since the goal of the manufacturing line is to keep products
moving at a specified pace, full analysis or repair of failed
products is not done at this time. Most often failed products
are removed from the line, tagged as being defective, and
attached with some type of information, that can be used to
further diagnosis and repair of the product at a later time.

Diagnosis
This subprocess has two goals: 1) determine why a specific
product failed a specific test and, 2) if possible, effect the
necessary repairs to that product. During the normal
manufacturing process failed units are diagnosed in order to
effect sufficient repairs to allow the units to become part of
manufacturing output.

Boundary-Scan Tutorial

 63

In the preferred case, the diagnostic engineer first examines
the test results from the test failure that occurred to
determine that the product is faulty. After this examination, if
the defect cannot be determined, the diagnostic engineer
would like to rerun the same test to determine if the failure is
repeatable in the current environment. If the defect is still
not determinable, the diagnostic engineer will want to
execute additional tests, either ones previously created or
others created during diagnosis to try and debug the
product.

In many ways, this process is similar to the design debug
process, except that the diagnostic engineer knows that the
board has at least one defect and can have some
information to pinpoint where that defect is.

Different from the design debug process, this diagnostic
engineer almost certainly does not have any depth of
knowledge of the product at hand and does not have access
to the type of computer-aided design information or other
data available in earlier processes.

Field Test and Repair
The goal of this process is to, as quickly as possible,
determine what product or part of a product in end-customer
use is faulty and replace the faulty unit. In this way, this
process is similar to the first part of the diagnosis process,
except here the engineer may be dealing with the test and
diagnosis of a much more complicated system involving
many individual boards or subsystems.

As in the diagnosis process, the field test engineer will want
to run the test program for a product to determine what is
wrong. And, may want to run additional tests or interactive
applications in order to further isolate the defective unit.
Also, there is a desire for this testing to be done without any
or minimal human intervention. In this case, the product’s
operating system automatically, or under human direction,
runs the required tests and reports back appropriate
diagnostic information.

Boundary-Scan Tutorial

 64

A key point about this process is that it always occurs in an
environment that is not directly under the control of the
company that produced the product. This means that the
people and tools used during this process must be flexible
and must be available at the end-customer’s site.

Boundary-Scan Tools Requirements
A well-developed implementation of boundary-scan
architecture in combination with the right boundary-scan
software tools can provide major benefits over more
traditional methods such as logic analyzers, oscilloscopes,
and in-circuit testers for many test and design debug tasks.

These benefits include:

�� Easily handle complex system configurations which
include daughtercards, multichip modules (MCMs),
single inline memory modules (SIMMs), or other
modules that are added to the main board

�� Test systems which are configurable where the system
composition changes based on end-customer demands

�� Access and control device registers, buses, and pins
�� Easily access Built-In Self-Test (BIST) capabilities

present in devices in the system
�� Integrate testing of non-scannable devices and

memories
�� Integrate a boundary-scan test suite with other test tools

and test executives through industry-standard
programming interfaces

�� Better match price and performance by providing the
toolset running on multiple platforms

�� Reuse test suites at higher levels of integration and
through different phases of the product life-cycle

�� Embed tests into the system for on-line testing and
diagnostics while in the field

�� Complete the required manufacturing defect detection
and diagnosis

Boundary-Scan Tutorial

 65

In the following discussion, we will examine each process of
the product life-cycle and what boundary-scan tools are
required to gain the most from your boundary-scan
investment.

Design Debug
With the inclusion of boundary-scan architecture into a
design, the design team has a real opportunity (for the first
time) to perform deterministic structural defect analysis on
their prototype boards and systems as done in the
manufacturing environment. To support this type of
analysis, the boundary-scan tools must present the same
kinds of tools as traditionally found in the manufacturing test
environment. A more complete description of these
capabilities is included in the Manufacturing Test section,
but in general these are the capabilities required are:

�� Vector creation tools for:

�� scan path and interconnect testing
�� non-scan clusters of logic surrounded by boundary-

scan devices
�� memory testing
�� conversion of chip-level parallel tests for application

in a serial environment
�� easily creating other custom tests for the UUT

�� Diagnostics capabilities for interconnect testing with

resolution to at least the net-level and preferably to the
pin-level and other diagnostics for analyzing results from
serial vector application

In addition to assisting with manufacturing defect analysis of
prototypes, boundary-scan tools can provide the design
engineer with many capabilities to assist functional debug of
the prototype design. Boundary-scan based interactive
design tools allow the design engineer to access and control
boundary-scan device registers and pins as an adjunct to
other functional tester access. With this ability, the designer

Boundary-Scan Tutorial

 66

can ensure that correct values are driven to critical
components, drive specific values onto a device, or gain
access to internal device registers that might provide clues
to functional errors. These design debug tools fall into two
general capabilities: scan analysis and debugging.

Scan analysis tools allow you to apply test vectors to the
unit under test, capture responses, and view those
responses in state table or digital waveform displays. These
tools also support concepts common to logic analyzers such
as triggering and sequences that allow you to control when
and how much response data to collect for analysis. With
these tools, you can view a large number of vectors and
analyze the hardware’s response. Comparisons can be
made between expected and actual values automatically
speeding debug time.

Debugging tools provide an interactive interface for control
and observation of the IEEE 1149.1 architecture. Features
includes:

�� Graphical view of the design hierarchy
�� Ability to edit scan data at the register and pin level
�� Data manipulation via user-defined symbolics or via

binary, decimal, or hexadecimal data input
�� Register grouping based on a design’s functionality
�� One-button interface to apply changes made to the

instructions and data values
�� Single-step application of pre-existing tests or serial

vectors
�� Interactive recording to create a test from an interactive

sequence of debug steps

Manufacturing Test

Vector Creation
Vector creation tools provide a means to create and verify
five basic types of tests: scan path integrity, interconnect,

Boundary-Scan Tutorial

 67

cluster, memory, and custom. A brief discussion of each of
these types of vector creation follows.

Scan path integrity tests involve verifying that the four-wire
connection for the boundary-scan test bus does not have
faults on it. The tool should provide an automated means of
creating the vector sequence required to verify this.
Diagnostics will pinpoint the device and signal which is
faulty.

Interconnect tests are the same as in the traditional
manufacturing test environment and provide the ability to
detect and isolate common stuck-at and open/shorts on
device interconnect. The tool should provide an automated
means of creating these vectors taking as input your device-
level boundary-scan descriptions, a description of how the
boundary-scan devices are arranged in the scan chain, and
CAE netlist information in common formats for the non-test
device interconnections. The tools also should provide a
means to easily ignore series devices in the design as a
means of improving diagnostics later and provide an easy
means of setting control values on certain pins that may not
be changed during the test, e.g., a program pin on an FPGA
or PLD. Textual outputs of fault coverage and vector
responses are also required.

Cluster tests are generated to test either a single device or
cluster of non-boundary-scan devices surrounded by
boundary-scan devices. This capability allows you to extend
vectors created in the CAE environment into your boundary-
scan testing. The cluster test tool provides a means of
translating those parallel CAE vectors into a serial format for
easy application in your boundary-scan system. This tool
should provide a means of automatically setting the values
for boundary-scan control cells to control the operation of
bidirectional and tristate pins during vector application and
response acquisition.

Memory test creation involves the automatic generation of
the vectors required to test address, data, and control lines
for memory devices adjacent to boundary-scan devices.

Boundary-Scan Tutorial

 68

This tool should use the boundary-scan description of the
system, and specific information on the type and size of the
memory device to create vectors for application.

Custom tests involve those tests you might want to create
which are particular to your design. For this type of test
creation the vector creation tool needs to provide an easy-
to-use and simple programming language that allows full
access and control to the registers and pins of boundary-
scan devices. Using this programming language you should
be able to easily tailor vectors to verify an array of static
functional or structural problems with your design, including
execution of BIST capabilities of a device.

Test Program Creation
Once the vectors required for the scan-based
manufacturing test have been created, they must be
assembled into a test program for delivery to the
manufacturing floor.

Test program creation takes into account all of the varying
needs you have in the manufacturing environment to
provide you the functions necessary to develop custom test
suites, integrate test suites with other test tools and
executives, or build an entire manufacturing test capability.
The environment should include a simple means of creating
a test program based on industry standard test executives
and provide industry-standard programming environments
such as C and C++ for more complex test program creation.

The programming environment should provide access to the
boundary-scan-accessible registers and pins through
natural programming methods for custom-test suite
development. It also should allow reuse of previously
created test programs and vectors to speed the test
development process.

Boundary-Scan Tutorial

 69

Finally, with a high-level language basis, the programming
environment enables you to:

�� Reuse diagnostic reporting or other error routines that

have been developed previously
�� Share data with other test instruments
�� Integrate boundary-scan-based tests into commercial

test executives
�� Quickly produce a customized user-interface for your

test program based on Windows® technology

Test Program Execution
Once test programs are complete, you will need an effective
means of deploying your boundary-scan based tests in a
manufacturing environment. For this task, boundary-scan
solutions should include PC- and VXI- based test application
systems and the ability to integrate boundary-scan
controlled parallel I/O modules. These solutions provide
help in creating a manufacturing test environment to fully
use boundary-scan testing.

Diagnosis
When failures are discovered in the manufacturing line, the
boundary-scan tools provide several levels of diagnostics.
These include text-based analysis of serial vectors results,
net-level diagnostics for interconnect and cluster tests, and
pin-level diagnostics for interconnect tests.

The net-level diagnostics must provide isolation down to the
failing net, but may not detect the actual pin with the fault.
This is often sufficient for many faults and provides
sufficient data for fixing or proceeding with other tests.

Pin-level diagnostics must provide detailed fault diagnostics
for various stuck-at conditions, bridging faults, open and bad
bidirectional cells, and other opens and shorts. With this
detailed information, you can find and fix the faulty
component.

Boundary-Scan Tutorial

 70

Field Test and Repair
For field test and repair, boundary-scan tools allow the
extension of debug and diagnostics capabilities through
employment of portable computing solutions such as access
through a parallel printer port or PCMCIA card. In addition,
tests can be embedded into the unit under test for self-test
purposes. This involves the inclusion in the design of a test
bus controller device and use of controller-specific “C” code
to direct the application of vectors, acquisition of responses,
and diagnostics. Although diagnostics are often limited to
go/no-go, this provides a powerful alternative to lower the
cost of testing by eliminating the expense of on-site visits for
determining which unit must be replaced or repaired.

Boundary-Scan Tutorial

 71

Chapter 7: Conclusion
Widespread adoption of IEEE 1149.1 Standard for
boundary-scan architecture reflects an industry-wide need
to simplify the complex problem of testing boards and
systems for a range of manufacturing defects and
performing other design debug tasks. This standard
provides a unique opportunity to simplify the design debug
and test processes by enabling a simple and standard
means of automatically creating and applying tests at the
device, board, and system levels. Several companies have
responded with boundary-scan-based software tools that
take advantage of the access and control provided by
boundary-scan architecture to ease the testing process.

In this tutorial, we have discussed the motivation for the
standard, the architecture of an IEEE 1149.1-compliant
device, and presented a simple introduction to the use of
the IEEE 1149.1 features at the board level — both to
detect and locate manufacturing defects. We have reviewed
applicable data standards and discussed the issues
associated with choosing boundary-scan tools. For further
details on boundary-scan — at the device level, board level,
or system level — see the references listed in the
Bibliography.

Boundary-Scan Tutorial

 72

Bibliography

1. K. Parker, “The Boundary-Scan Handbook: Analog and
Digital,” Kluwer Academic Press, 1998, Second Edition
(Very good chapters on BSDL and on DFT guidelines)

2. H. Bleeker et al., “Boundary-Scan Test: A Practical
Approach,” Kluwer Academic Publishers, 1993 (The
“Philips” approach, including a chapter targeted on
managers)

Reference
1. IEEE 1149.1 Working Group, http://grouper.ieee.org/
groups.

2. BSDL/IEEE 1149.1 verification service, maintained by
Agilent Technologies. See http://www.agilent.com/see/
bsdl_service

3. Latest issues of: IEEE ITC Proceedings; Journal of
Electrical Test: Theory and Application (Kluwer Academic
Press); IEEE Design & Test of Computers

Other articles can be found on the ASSET InterTech
homepage at http://www.asset-intertech.com.

http://grouper.ieee.org/
http://www.agilent.com/see/

	Introduction	1
	Using the Scan Path	5
	Handling Non-Boundary-Scan Clusters	37
	I
	Introduction
	Chapter 1: The Motivation for Boundary-Scan Architecture
	Chapter 2: The Principle of Boundary-Scan Architecture
	Using the Scan Path

	Chapter 3: IEEE 1149.1 Device Architecture
	The Instruction Register
	The Instructions
	Using the Instruction Register (IR)
	Use of the “Capture 01” Mode
	The Test Access Port (TAP)
	The Bypass Register
	The Identification Register
	Use of the lsb = 1 Feature
	Boundary-Scan Register
	Providing Boundary-Scan Cells
	Accessing Other Core-Logic Registers

	Chapter 4: Application at the Board Level
	General Strategy
	Interconnect Test Example
	Practical Aspects of Using Boundary-Scan Technology
	Handling Non-Boundary-Scan Clusters
	Access to RAM Arrays
	Other Issues of BScan-to-Non-BScan Interfacing
	Assembling the Final Test Program
	Tester Hardware

	Chapter 5: Related Standards
	Boundary-Scan Description Language (BSDL)
	What Is BSDL?
	How BSDL is Used
	Elements of BSDL

	Hierarchical Scan Description Language (HSDL)
	What Is HSDL?
	HSDL Module Statements

	Serial Vector Format (SVF)
	What Is SVF?
	SVF Structure
	State Commands
	Offset Commands
	Parallel Commands
	Default State Transitions
	Stable State Path Examples

	Chapter 6: Boundary-Scan Tools
	Product Life Cycle Issues
	Design Debug
	Manufacturing Test
	Field Test and Repair

	Boundary-Scan Tools Requirements
	Design Debug
	Manufacturing Test
	Field Test and Repair

	Chapter 7: Conclusion
	Bibliography
	Reference

