

Application of Data Fusion to Aerial Robotics

Paul Riseborough March 24, 2015

Outline

- Introduction to APM project
- What is data fusion and why do we use it?
- Where is data fusion used in APM?
- Development of EKF estimator for APM navigation
 - Problems and Solutions
- Future developments
- Questions

APM Overview

- Worlds largest open source UAV autopilot project
 - Over 100,000 users (consumer, hobbyist, education and commercial)
- Multi Vehicle
 - Fixed wing planes
 - multi rotors & traditional helicopters
 - ground rovers
- Multi Platform
 - Atmega 2560
 - ARM Cortex M4
 - Embedded Linux

Hardware Evolution

https://www.youtube.com/watch?v=XfvDwI4YVGk

What is / Why Data Fusion

- In our context
 - Processing of data from multiple sources to estimate the internal states of the vehicle
- Data fusion enables use of many low cost sensors to achieve required performance and robustness
 - Faulty sensors can be detected
 - Effect of sensor noise and errors can be reduced
 - Complementary sensing modalities can be combined (inertial, vision, air pressure, magnetic, etc) to achieve robust estimation
- The 'Holy Grail' is reliable and accurate estimation of vehicle states, all the time, everywhere and using low cost sensors
 - Still the weakest link in the reliability chain
 - Failure can result in un-commanded flight path changes and loss of control

Data Fusion in APM

- Used to estimate the following:
 - Vehicle position, velocity & orientation
 - Wind speed & direction
 - Rate gyro and accelerometer offsets
 - Airspeed rate of change
 - Airspeed scale factor error
 - Height above ground
 - Magnetometer offset errors
 - Compass motor interference
 - Battery condition

Data Fusion in APM

Techniques:

- Complementary Filters
 - Computationally cheap can run on 8bit micros
 - Used for inertial navigation on APM 2.x hardware
 - Used to combine air data and inertial data for plane speed and height control
- Nonlinear Least Squares
 - Batch processing for sensor calibration
- Extended Kalman Filters
 - Airspeed sensor calibration, 3-states
 - Flight vehicle navigation, 22-states, only on 32-bit micros
 - Camera mount stabilisation, 9 states, only on 32-bit micros

What is an EKF?

- Stand for 'Extended Kalman Filter'
- Enables internal states to be estimated from measurements for non-linear systems
- Assumes zero mean Gaussian errors in model and measured data

EKF Processing Steps

- The EKF always consists of the following stages:
 - Initialisation of States and Covariance Matrix
 - State Prediction
 - Covariance Prediction
 - Measurement Fusion which consists of
 - Calculation of innovations
 - Update of states using the innovations and 'Kalman Gains'
 - Update of the 'Covariance Matrix'

State Prediction

- A standard strap-down inertial navigation processing is used to calculate the change in orientation, velocity and position since the last update using the IMU data
- IMU data is corrected for earth rotation, bias and coning errors
- Bias errors, scale factor errors and vibration effects are the major error sources
- Inertial solution is only useful for about 5 to 10 seconds without correction

Covariance Prediction

- The uncertainty in the states should always grow over time (until a measurement fusion occurs).
- The EKF linearises the system equations about the current state estimate when estimating the growth in uncertainty

What is the 'Covariance Matrix'?

Measurement Fusion

- Updates the state estimates and covariance matrix using measurements.
- The covariance will always decrease after measurements are fused provided new information is gained.

Kalman Gain:
$$m{K} = m{P}_k^- m{H}_k \left[m{H}_k m{P}_k^- m{H}_k^T + m{R}_k \right]^{-1}$$
 Measurement covariance Covariance Update: $m{P}_k^+ = \left[m{I} - m{K} m{H}_k \right] m{P}_k^-$ Predicted measurement State Update: $m{x}_k^+ = m{x}_k^- + m{K} m{
u}$

What is the 'Innovation'?

- Difference between a measurement predicted by the filter and what is measured by the sensor.
- Innovations are multiplied by the 'Kalman Gain' matrix to calculate corrections that are applied to the state vector
- Ideally innovations should be zero mean with a Gaussian noise distribution (noise is rarely Gaussian).
- Presence of bias indicates missing states in model

Innovation Example – GPS Velocities

Navigation EKF Implementation

- 22 State Navigation EKF, where states are:
 - Angular position (Quaternions)
 - Velocity (NED)
 - Position (NED)
 - Wind (NE)
 - Gyro delta angle bias vector (XYZ)
 - Accelerometer bias (Z only)
 - Magnetometer bias errors (XYZ)
 - Earth magnetic field vector (NED)
- Single precision math throughout
- C++ library AP_NavEKF, containing 5200 SLOC
- Optimized to use 8% of 168MHz STM32 micro running at a 400Hz prediction rate

https://github.com/diydrones/ardupilot/blob/master/libraries/AP_NavEK F/

Sensing

- Dual IMU sensors (body angular rates and specific forces)
 - IMU data is used for state prediction only, it is not fused as an observation
- GPS (Lat/Lon/Alt and local earth frame velocity)
- 3-Axis magnetometer
- Barometric Altitude
- True Airspeed
- Range finder (range to ground)
- Optical flow sensor (optical and inertial sensor delta angles)

Problem 1: Processor Utilisation

- Significant emphasis on computational efficency...
 - Limited processing: 168MHz STM32
 - Ardupilot is single threaded
 - 400Hz predictions, can't take more than 1300micro sec (50% of total frame time)
- Implementation:
 - Matlab Symbolic Toolbox used to derive algebraic equations.
 - Symbolic objects are optimized and converted to C-code fragments using custom script files. Current process is clunky. Mathworks proprietary converters cannot handle problem size.

Efficient Algorithms

Solutions: Covariance Prediction

- Implemented as explicit algebraic equations (Matlab>>C)
 - 5x reduction in floating point operations over matrix math for the covariance prediction
- Asyncronous runtime
 - Execution of covariance prediction step made conditional on time, angular movement and arrival of observation data.

Solutions: Measurement Fusion

- Sequential Fusion: For computationally expensive sensor fusion steps (eg magnetometer or optical flow), the X,Y,Z components can be fused sequentially, and if required, performed on consecutive 400Hz frames to level load
- Adaptive scheduling of expensive fusion operations, based on importance and staleness of data can be used to level load.
- Exploit sparseness in observation Jacobian to reduce cost of covariance update

Problems

- Stability: sequential fusion reduces filter stability margins >> care is taken to maintain positive variances (diagonals) and symmetry of covariance matrix
- Jitter: Jitter associated with servicing sensor interrupts. Recent improvements to APM code have significantly reduced problems in this area

Problem 2: Bad Data

- Broad consumer/commercial adoption of Ardupilot = lots of corner cases
- Over 90% of development work is about 'corner cases' relating to bad sensor data including:
 - IMU gyro and accelerometer offsets
 - IMU aliasing due to platform vibration
 - GPS glitches and loss of lock
 - Barometer drift
 - Barometer disturbances due to aerodynamic effects (position error, ground effect, etc)
 - Magnetometer calibration errors and electrical interference
 - Range finder drop-outs and false readings
 - Optical flow dropouts and false readings

Solutions for Bad Data

- IMU bias estimation (XYZ gyro and Z accel)
 - XY accel bias is weakly observable for gentle flight profiles and is difficult to learn in the time frame required to be useful
- Innovation consistency checks on all measurements
- Rejection Timeouts
 - Dead reckoning only possible for up to 10s with our cheap sensors
 - GPS and baro data rejection has a timeout followed by a reset to sensor data
- GPS glitch recovery logic
 - Intelligent reset to match inertial sensors after large GPS glitch
- Aliasing Detection
 - If GPS vertical velocity and barometer innovations are same sign and both greater than 3-Sigma, aliasing is likely.
- Dual accelerometers combined with variable weighting
 - Weighting based on innovation consistency (lower innovation = higher weight)
 - Different sample rates reduce likelihood both will alias badly

Problem 3: Update Noise

- 'Text Book' implementation of an EKF produces steps in state estimates when observations are fused and states updated.
 - APM multirotor cascaded control loops are vulnerable to this type of noise due to use of cascaded PID controllers and lack of noise filtering on motor demands.
- Solved by applying state correction incrementally across time to next measurement
 - Reduces filter stability margins

Problem 4: Measurement Latency

- Observations (eg GPS) are delayed relative to inertial (IMU) data
 - Introduces errors and filter stability
- Potential Solutuions
- 1. Buffer state estimates and use stored state from measurement time horizon when calculating predicted measurement used for data fusion step.
 - Assumes covariance does not change much across internal from measurement time horizon to current time
 - Not good for observations in body frame that have significant delays
 - Computationally cheap and is method used by current APM EKF
- 2. Buffer IMU data and run EKF behind real time with a moving fusion time horizon. Use buffered inertial data to predict the EKF solution forward to the current time horizon each time step
 - Too memory and computationally expensive for implementation on STM32
- 3. Same as 2. but a simple observer structure is used to maintain a state estimate at the current time horizon that tracks the delayed filter estimate at the delayed time horizon
 - Recent theoretical work by Alireza Khosravian from ANU (Australian National University)
 - Robustness benefits of option 2, but computationally cheap enough to run on an STM32
 - Will be implemented in future APM

Optical Flow Fusion

Angular Rate

- Why?
 - Outdoor landing and takeoff
 - Indoor station keeping
- Uses a PX4Flow smart camera
- Images and gyro rates sampled at 400Hz
 Velocity
 Shift between images converted to equivalent angular rate
 - Flow Rate = pixels_moved / delta_time * pixels_per_radian
 - Gyro and flow rates accumulated as delta angles and used by the EKF at 10Hz
 - Observability
 - If velocity is non-zero and known (eg GPS), height is observable
 - If height is known, velocity is observable

Optical Flow Design Challenges

- Accurate time alignment of gyro and flow measurements required
 - Misalignment causes coupling between body angular motion and LOS rates which destabilizes velocity control loop.
 - Effect of misalignment worsens with height
- Focal length uncertainty and lens distortion
 - Causes coupling between body angular motion and LOS rates which destabilizes velocity control loop.
 - Can vary 10% from manufacturers stated value
 - Sensors must allow for storage of calibration coefficients
 - Can be estimated in flight given time
- Assumption of flat level terrain
- Scale errors due to poor focus, contrast
 - Innovation consistency checks
- Moving background

Optical Flow On Arducopter

 https://www.youtube.com/watch?v=9kBg0j EmhzM

Where To Next?

Lessons Learned:

- Large efficiency gains using scalar operations on the STM32 micro compared to 'brute-force' matrix math
- Stability challenges due to single precision maths
- It's all about the corner cases!
- 90% of code maintenance has been in the state machine and related data checks.

Where To Next?

- New derivation for pose estimation based on use of a rotation vector for attitude estimation "Rotation Vector in Attitude Estimation", Mark E. Pittelkau, Journal of Guidance, Control, and Dynamics, 2003
 - Prototype in Ardupilot: 9-state gimbal estimator
 - Reduces computational load (3 vs 4 attitude states)
 - Reduces issues with linearization of quaternion parameters with large state uncertainty.
 - Enables bootstrap alignment from unknown initial orientation on moving platforms including gyro bias estimation
 - https://github.com/diydrones/ardupilot/blob/master/libraries/AP_NavEKF/AP_SmallE KF.cpp

Where To Next?

- Tightly Coupled GPS fusion:
 - Use individual satellite pseudo range and range rate observations.
 - Better robustness to multi-path
 - Eliminate reliance on receiver motion filter
 - Requires double precision operations for observation models
- Move to a more flexible architecture that enables vehicle specific state models and arbitrary sensor combinations
 - Enables full advantage to be taken of multiple IMU units
 - Use of vehicle dynamic models extends period we can dead-reckon without GPS.
 - Requires good math library support (breaking news we now have Eigen 3 support in PX4 Firmware!!)

Flexible Architecture State Estimator

- Common and platform/application specific states in separate regions in the state vector and covariance matrix
- Use of Eigen matrix library to take advantage of sparseness and structure
- Generic observation models
 - Position
 - Velocity
 - Body relative LOS rate
 - Inertial LOS rate
 - Body relative LOS angle
 - Inertial LOS angle
 - Range
 - Delta Range
 - Delta Range Rate
 - Airspeed
 - Magnetometer

Covariance Matrix

SUPPORTING SLIDES DERIVATION OF FILTER EQUATIONS

AP_NavEKF Plant Equations

```
% Define the state vector & number of states
stateVector = [q0;q1;q2;q3;vn;ve;vd;pn;pe;pd;dax_b;day_b;daz_b;dvz_b;vwn;vwe;magN;magE;magD;magX;magY;magZ];
nStates=numel(stateVector);
% define the measured Delta angle and delta velocity vectors
da = [dax; day; daz];
dv = [dvx; dvy; dvz];
% define the delta angle and delta velocity bias errors
da b = [dax b; day b; daz b];
dv b = [0; 0; dvz b];
% derive the body to nav direction cosine matrix
Tbn = Quat2Tbn([q0,q1,q2,q3]);
% define the bias corrected delta angles and velocities
dAngCor = da - da b;
dVelCor = dv - dv_b;
% define the quaternion rotation vector
quat = [q0;q1;q2;q3];
```

AP_NavEKF Plant Equations

```
% define the attitude update equations
delQuat = [1;
  0.5*dAngCor(1);
  0.5*dAngCor(2);
  0.5*dAngCor(3);
qNew = QuatMult(quat,delQuat);
% define the velocity update equations
vNew = [vn;ve;vd] + [gn;ge;gd]*dt + Tbn*dVelCor;
% define the position update equations
pNew = [pn;pe;pd] + [vn;ve;vd]*dt;
% define the IMU bias error update equations
dabNew = [dax_b; day_b; daz_b];
dvbNew = dvz b;
% define the wind velocity update equations
vwnNew = vwn:
vweNew = vwe;
```

AP_NavEKF Plant Equations

```
% define the earth magnetic field update equations
magNnew = magN;
magEnew = magE;
magDnew = magD;

% define the body magnetic field update equations
magXnew = magX;
magYnew = magY;
magZnew = magZ;

% Define the process equations output vector
processEqns =
[qNew;vNew;pNew;dabNew;dvbNew;vwnNew;vweNew;magNnew;magEnew;magDnew;magXnew;magYnew;magZnew];
```

AP_SmallEKF Plant Equations

```
% define the measured Delta angle and delta velocity vectors
dAngMeas = [dax; day; daz];
dVelMeas = [dvx; dvy; dvz];
% define the delta angle bias errors
dAngBias = [dax_b; day_b; daz_b];
% define the quaternion rotation vector for the state estimate
estQuat = [q0;q1;q2;q3];
% define the attitude error rotation vector, where error = truth - estimate
errRotVec = [rotErr1;rotErr2;rotErr3];
% define the attitude error quaternion using a first order linearisation
errQuat = [1;0.5*errRotVec];
% Define the truth quaternion as the estimate + error
truthQuat = QuatMult(estQuat, errQuat);
% derive the truth body to nav direction cosine matrix
Tbn = Quat2Tbn(truthQuat);
```

AP_SmallEKF Plant Equations

```
% define the truth delta angle
% ignore coning acompensation as these effects are negligible in terms of
% covariance growth for our application and grade of sensor
dAngTruth = dAngMeas - dAngBias - [daxNoise;dayNoise;dazNoise];
% Define the truth delta velocity
dVelTruth = dVelMeas - [dvxNoise;dvyNoise;dvzNoise];
% define the attitude update equations
% use a first order expansion of rotation to calculate the quaternion increment
% acceptable for propagation of covariances
deltaQuat = [1;
  0.5*dAngTruth(1);
  0.5*dAngTruth(2);
  0.5*dAngTruth(3);
truthQuatNew = QuatMult(truthQuat,deltaQuat);
% calculate the updated attitude error quaternion with respect to the previous estimate
errQuatNew = QuatDivide(truthQuatNew,estQuat);
% change to a rotaton vector - this is the error rotation vector updated state
errRotNew = 2 * [errQuatNew(2);errQuatNew(3);errQuatNew(4)];
```

AP_SmallEKF Plant Equations

```
% define the velocity update equations
% ignore coriolis terms for linearisation purposes
vNew = [vn;ve;vd] + [0;0;gravity]*dt + Tbn*dVelTruth;
```

% define the IMU bias error update equations dabNew = [dax_b; day_b; daz_b];

% Define the state vector & number of states stateVector = [errRotVec;vn;ve;vd;dAngBias]; nStates=numel(stateVector);