
Ray Kinsella

Senior Software Engineer

Embedded and Communications Group

Intel Corporation

Xen in Embedded Systems

2

Legal Notices
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE
FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever
for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design
with this information.
Intel Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and applications enabled for
virtualization technology. Functionality, performance or other virtualization technology benefits will vary depending on hardware and software
configurations. Virtualization technology-enabled BIOS and VMM applications are currently in development.
Performance results are based on certain tests measured on specific computer systems. Any difference in system hardware, software or configuration
will affect actual performance. For more information go to http://www.intel.com/performance.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents
which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to:
http://www.intel.com/design/literature.htm
BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Core Inside, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel
Core, Intel Inside, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow.,
the Intel Sponsors of Tomorrow. logo, Intel StrataFlash, Intel vPro, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru soundmark, Itanium,
Itanium Inside, MCS, MMX, Moblin, Pentium, Pentium Inside, skoool, the skoool logo, Sound Mark, The Creators Project, The Journey Inside, vPro Inside,
VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2010, Intel Corporation. All rights reserved.

http://www.intel.com/performance�
http://www.intel.com/design/literature.htm�

Summary & Agenda

This presentation examines the integration of Xen* Virtualisation into
embedded systems. It covers effective partitioning of system resources
for deterministic embedded applications.

Agenda
• Overview of Xen Virtualisation

– Types of hypervisor

– Types of guest

– Embedded use cases

• Xen in Embedded Systems
– Partitioning CPU Time

– Partitioning System Memory

– Partitioning System I/O

– Power usage

3

What is Xen?

• Xen is a bare metal hypervisor

– Originally designed for data centre or server environments consolidation.

– A privileged guest Domain 0 (Dom 0) will always exist.

– Dom 0 owns all devices (PCI, Storage, USB, etc.) and arbitrates their usage between guests.

– Xen includes mechanisms for device multiplexing such as “split drivers”.

• Xen’s design goal is the “separation of policy and mechanism”.

– Policy is implemented in Dom 0 Daemons (Xen Daemon).

– Mechanism is implemented in the Xen hypervisor layer.

Desktop Virtualisation Kernel Virtualisation

Xen Virtualisation

Bare metal Hypervisor

Overview of Xen Virtualisation

4

Types of guests

Para-Virtualised (PV) Guests

• Are “aware” they are virtualised.

• PV guest will delegate many aspects
of operating system function to the
hypervisor via kernel hooks aka
hypercalls.

Hardware-Virtual-Machine (HVM) Guests

• Are “not aware” that they are virtualised.

• Qemu* emulates common hardware for
HVM guests and the operating system
loads real world drivers.

• Graphics interface is exported through
VNC.

Overview of Xen Virtualisation

Xen can support many diverse guests concurrently

5

Embedded use cases

Application integration
Integrating new and legacy applications onto
same hardware.

Un-trusted application
Integrate an un-trusted application (a 3rd

party application) onto same hardware.

Resource isolation
Restricting the resources assigned to each
application.

High availability
Ensuring that an application is always available.
Standby instances are always ready to run in
case of failure.

Overview of Xen Virtualisation

Intel® Architecture

X
en

PV Dom0
Control Plane

PV DomU
High Availability

Application

PV DomU
High Availability

Application

Intel® Architecture

X
en

PV Dom0
Control Plane

PV DomU
High

Performance
Application

PV DomU
High

Performance
Application

6

Xen in Embedded Systems

7

Virtual CPU Architecture

Virtual CPU (VCPU)

• Are an abstraction layer created by Xen’s scheduler.

• Isolates guest from the actual number of physical CPUs.

• Xen has a scheduler similar to an OS scheduler that arbitrates between
the guests contending for CPU time based on priority.

Partitioning CPU Time

Intel® Architecture

X
en

CORE-0 CORE-1 CORE-2 CORE-3

PV Guest

VCPU-N

VCPU-0 VCPU-1

…….

HVM Guest

VCPU-N

VCPU-0 VCPU-1

…….

Credit Scheduler

8

1000

1200

1400

1600

1800

2000

2200

2400

2600

16 Threads 16 Threads 8 Threads

CentOS* 5.4 1 Guest 2 Guests

Native Xen 4.0.0 Xen 4.0.0

SSL Encrypt
Throughput

Mb/sec

Virtual CPU Performance

SSL Encrypt is a simple CPU-intensive application.

• It uses the pthreads library to parallelise an encrypted workload over multiple cores.

• It uses the OpenSSL* libraries to encrypt pools of 64-byte buffers using AES 128-bit CBC
encryption.

Note the scale

Equivalent performance native to virtualised

Partitioning CPU Time

9

0

500

1000

1500

2000

2500

Default† Xen 4.0.0 80/20 Xen 4.0.0

SSL Encrypt
Throughput

Mb/sec

Guest B

Guest A

80/20 Ideal

The Credit Scheduler

The Xen Credit scheduler
• Default scheduler in Xen 4.0.0

– The Credit scheduler is proportional fair share scheduler.

– The Credit scheduler is a work-conserving scheduler.

• Scheduler parameters

– Cap : Assign a time cap in hundredths of seconds to a guest, (0 – N *100), where N is the number of cores
in the system.

– Weight: Assign a weight to each guest (1 – 65536); default is a weight of 256.

Scheduler partitioning of core time is effective

Partitioning CPU Time

† 50/50 running two guests on the
same cores with equal weighting.

10

0

1

2

3

4

5

6

7

No Pinning Pinning Weighting Capping

2 PV Guests 2 PV Guests 2 PV Guests 2 PV Guests

SSL Encrypt
STDev - MB

The graph above shows the standard deviation of throughput with different scheduler settings,
assignment, pinning, and capping.

Modest cost in determinism with scheduler partitioning

Partitioning CPU Time

The Credit Scheduler

11

Virtual CPU Configuration

Caveat Emptor

Partitioning CPU Time:
• If possible, partition CPU resources by assigning cores to guests rather than using scheduler

weighting or caps.

CPU Pinning:
• Make the number of Virtual CPUs equal to the number of cores.

• Use vcpu-pin to assign a guest VCPU to a specific core.

Remember:
• Dom 0 must service the hardware assigned to it.

• In all guests:

– Switch off unnecessary OS kernel features; i.e., use a tickless kernel…

– Turn off unnecessary OS services … e.g., CentOS* Bluetooth* manager.

– Remove unnecessary drivers; e.g., the USB driver.

Partitioning CPU Time

12

Real-Time on Xen

The Chinese Dragon Festival
Photo © Walter Baxter and licensed for reuse under a Creative Commons License.

Recommended reading:

Supporting Soft Real-Time Tasks in the Xen Hypervisor; Min Lee, A.S Krishnakumar, P. Krishnan, Navjot Singh, Shalini Yajnik;
Georgia Institute of Technology, and Avaya Labs

Extending Virtualization to Communications and Embedded Applications; Edwin Verplanke, Don Banks; Intel Corporation,
and Cisco Systems, Inc.; Intel Developer Forum (IDF) 2010

Real-Time

13

http://www.geograph.org.uk/photo/676728�
http://www.geograph.org.uk/photo/676728�
http://www.geograph.org.uk/profile/6638�
http://www.geograph.org.uk/reuse.php?id=676728�
http://creativecommons.org/licenses/by-sa/2.0/�
http://delivery.acm.org/10.1145/1740000/1736012/p97-lee.pdf?key1=1736012&key2=3897075821&coll=GUIDE&dl=GUIDE&CFID=106487618&CFTOKEN=62692929�
https://intel.wingateweb.com/us10/scheduler/catalog/catalog.jsp�

0

50

100

150

200

250

Page alloc

uSec

Increase in cost
of a page
allocation

Bubble Memory + NUMA

• The bubble memory driver can arbitrate (share) memory between
guests. This is not the default behaviour on Xen.

– Page allocation incurs a ~16% performance penalty during
memory bubbling.

• Mitigate by statically assigning memory to guests. This is the default
behaviour on Xen.

– maxmem: set maximum amount of memory a domain can be
allocated

– memory: set initial amount of memory a domain is allocated

NUMA
• Xen is NUMA-aware

– Non-Uniform Memory Architecture (NUMA)

– Switched on in Xen 4.0.0 by default

• Guests are not NUMA-aware (yet!)

– A patchset has been submitted to Xen, to
enable NUMA awareness for PV and HVM
guests.

Bubble Memory

Socket-0

CORE-0 CORE-1

CORE-2 CORE-3
Socket-1

CORE-4 CORE-6

CORE-5 CORE-7

DDR3

DDR3

DDR3

DDR3

DDR3

DDR3

Partitioning System Memory

14

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Guest A - 16 Threads Native - 16 Threads Guest A+B - 8+8 Threads

Lmbench*
mem_bw
MB/sec

NUMA Optimal Configuration

Optimal Configuration
Guest does not cross sockets, bind guests to cores
on one socket only.

Sub-optimal Configuration
Guest crosses sockets, guest is bound to cores on
more than one socket

Guest A crosses sockets

X
en

N
um

a
N

od
e

1 N
um

a N
ode 2

Intel® Architecture

Guest Guest

Intel® Architecture

X
en

N
U

M
A

 N
od

e
1

Guest

N
U

M
A

 N
ode 2Guest

CORE-0 CORE-1

CORE-2 CORE-3

CORE-4 CORE-6

CORE-5 CORE-7

Partitioning System Memory

15

e1000

PV Dom0

Network Bridge

Netback Netback

Xen Bus

Netfront

PV Guest

Packets

Xen Networking – Software Switch

• Device sharing via the split driver model.

– The backend driver located in the Dom0 is responsible for multiplexing guest access to physical hardware.

– The frontend driver delivers data to the guest, implementing OS device driver interfaces.

• Xen networking

1. Packets are received by the Dom0 Ethernet* driver .

2. Packets then passed into the OS bridge driver, the destination Ethernet device is looked up, and the
packets are forwarded to the Ethernet device driver.

3. Packets are received the Netback driver in Dom0 and pushed onto a Xenbus ring.

4. Packets are popped off the Xenbus ring by Netfront driver and passed to the guest operating system.

Xen software switching mechanism

Hotspot

Xen shared device model

Intel® Architecture

X
en

Xen Bus
H

V
M

 G
ue

st

Backend Frontend
Qemu

PV Dom0
OS driver

PV Guest

Packets

Partitioning System I/O

16

Xen Networking – Hardware Switch

• Single Root I/O Virtualisation (SR-IOV)
Built on the following technologies available Intel® VT-c enabled
Network Interface Cards (NIC)

– I/O Acceleration: Intel® VT-d (IOMMU)

– Filtering Technology: Virtual Machine Device Queues (VMDq) -
Hardware MAC Filtering

– Queuing Technology: Multiple RX + TX Hardware Queues

Each guest has an exclusive NIC that has been virtualised in hardware
(SR-IOV).

• Xen Passthrough
– PCI configuration space is still owned by Dom0, guest PCI

configuration read and writes are trapped and fixed by Xen PCI
passthrough

Xen device passthrough model SR-IOV hardware switching

Intel® Architecture

X
en

Xen Bus

H
V

M
 D

om
U

Backend
Qemu

PV Dom0
OS driver

PV DomU

OS driver

Packets

Config
Space

igb

PV
 D

om
0

pciback

Xen Bus

igbvf

PV DomU
Packets

Config
Space

VT-d
(IOMMU)

Partitioning System I/O

RX TX TX

SW

TXRX

IOMMU

RX

SW HW SW HW HW

Software Switch VMDq SR-IOV

MAC Filter

MAC Filter

RX: Receive Queue
TX: Transmission Queue
HW: Hardware Queue
SW: Software Queue

17

Hardware vs. Software Packet Switching

• Hardware
– 2 x Intel® Xeon® Processor E5645 (12M Cache, 2.40 GHz, 5.86 GT/s Intel® QuickPath Interconnect) – 80W Thermal Design Power

(TDP)

– Intel® 82599 10Gb Ethernet Controller with SR-IOV capabilities

• Software
– Measured with Xen 4.0.0 with CentOS 5.4 Guests

– 1 Socket/6 Cores used to route traffic

35x performance increase on small packet sizes

Partitioning System I/O

18

0

10

20

30

40

50

60

70

80

90

100

64 128 256 512 1024 1280 1518

% Line Rate
(10 Gb)

Packet size in bytes

Xen Bridge

Xen + SR-IOV

CentOS 5.4 + SRIOV

Power Usage

0

50

100

150

200

250

Idle Idle (Dom0 only) 2 Idle guests (+
Dom0)

1 socket active 1 active guest
(+Dom0)

2 sockets active 2 active guests (+
Dom0)

CentOS 5.4 Xen 4.0.0 +
CentOS 5.4

Xen 4.0.0 +
CentOS 5.4

CentOS 5.4 Xen 4.0.0 +
CentOS 5.4

CentOS 5.4 Xen 4.0.0 +
CentOS 5.4

Watts

• Hardware
– 2 x Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI) – 60W TDP

– Intel® Server Board S5520HC

– Enermax* EVR1050EWT* Power Supply Unit – 88.61% efficiency

• Software
– Measured with Xen 4.0.0 with CentOS 5.4 Guests and CentOS 5.4 Native

Each guest is bound to
the cores on a separate socket

Equivalent performance native to virtualised

Power usage

19

Conclusions

 Equivalent performance native to virtualised.

 Potential benefits of virtualisation for embedded system
designers:

– Greater system security.

– Greater system determinism.

– Improved resource isolation.

– Controlled 3rd party platform access.

20

	Xen in Embedded Systems
	Slide Number 2
	Summary & Agenda
	Slide Number 4
	Types of guests
	Embedded use cases
	Xen in Embedded Systems
	Virtual CPU Architecture
	Virtual CPU Performance
	The Credit Scheduler
	The Credit Scheduler
	Virtual CPU Configuration
	Real-Time on Xen	
	Bubble Memory + NUMA
	NUMA Optimal Configuration
	Xen Networking – Software Switch
	Xen Networking – Hardware Switch
	Hardware vs. Software Packet Switching
	Power Usage
	Conclusions
	Slide Number 21

