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Summary & Agenda

This presentation examines the integration of Xen* Virtualisation into 
embedded systems. It covers effective partitioning of system resources 
for deterministic embedded applications.

Agenda
• Overview of Xen Virtualisation

– Types of hypervisor

– Types of guest

– Embedded use cases

• Xen in Embedded Systems
– Partitioning CPU Time

– Partitioning System Memory

– Partitioning System I/O

– Power usage
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What is Xen?

• Xen is a bare metal hypervisor 

– Originally designed for data centre or server environments consolidation. 

– A privileged guest Domain 0 (Dom 0) will always exist.

– Dom 0 owns all devices (PCI, Storage, USB, etc.) and arbitrates their usage between guests.

– Xen includes mechanisms for device multiplexing such as “split drivers”.

• Xen’s design goal is the “separation of policy and mechanism”. 

– Policy is implemented in Dom 0 Daemons (Xen Daemon).

– Mechanism is implemented in the Xen hypervisor layer.

Desktop Virtualisation Kernel Virtualisation 

Xen Virtualisation 

Bare metal Hypervisor 

Overview of Xen Virtualisation
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Types of guests

Para-Virtualised (PV) Guests

• Are “aware” they are virtualised.

• PV guest will delegate many aspects 
of operating system function to the 
hypervisor via kernel hooks aka 
hypercalls. 

Hardware-Virtual-Machine (HVM) Guests

• Are “not aware” that they are virtualised.

• Qemu* emulates common hardware for 
HVM guests and the operating system 
loads real world drivers. 

• Graphics interface is exported through 
VNC.

Overview of Xen Virtualisation

Xen can support many diverse guests concurrently
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Embedded use cases

Application integration
Integrating new and legacy applications onto 
same hardware.

Un-trusted application
Integrate an un-trusted application (a 3rd

party application) onto same hardware.

Resource isolation
Restricting the resources assigned to each 
application.

High availability
Ensuring that an application is always available. 
Standby instances are always ready to run in 
case of failure.

Overview of Xen Virtualisation

Intel® Architecture

X
en

PV Dom0
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PV DomU
High Availability 

Application

PV DomU
High Availability 

Application

Intel® Architecture
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6



Xen in Embedded Systems 
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Virtual CPU Architecture

Virtual CPU (VCPU)

• Are an abstraction layer created by Xen’s scheduler.

• Isolates guest from the actual number of physical CPUs.

• Xen has a scheduler similar to an OS scheduler that arbitrates between 
the guests contending for CPU time based on priority.

Partitioning CPU Time

Intel® Architecture

X
en

CORE-0 CORE-1 CORE-2 CORE-3

PV Guest

VCPU-N

VCPU-0 VCPU-1

…….

HVM Guest

VCPU-N

VCPU-0 VCPU-1

…….

Credit Scheduler
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Virtual CPU Performance

SSL Encrypt is a simple CPU-intensive application. 

• It uses the pthreads library to parallelise an encrypted workload over multiple cores. 

• It uses the OpenSSL* libraries to encrypt pools of 64-byte buffers using AES 128-bit CBC 
encryption. 

Note the scale

Equivalent performance native to virtualised

Partitioning CPU Time

9



0

500

1000

1500

2000

2500

Default† Xen 4.0.0 80/20 Xen 4.0.0 

SSL Encrypt
Throughput

Mb/sec

Guest B

Guest A

80/20 Ideal

The Credit Scheduler

The Xen Credit scheduler 
• Default scheduler in Xen 4.0.0

– The Credit scheduler is proportional fair share scheduler.

– The Credit scheduler is a work-conserving scheduler.

• Scheduler parameters

– Cap : Assign a time cap in hundredths of seconds to a guest, (0 – N *100), where N is the number of cores 
in the system.

– Weight: Assign a weight to each guest (1 – 65536); default is a weight of 256. 

Scheduler partitioning of core time is effective

Partitioning CPU Time

† 50/50 running two guests on the 
same cores with equal weighting. 
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The graph above shows the standard deviation of throughput with different scheduler settings, 
assignment, pinning, and capping.

Modest cost in determinism with scheduler partitioning

Partitioning CPU Time

The Credit Scheduler
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Virtual CPU Configuration 

Caveat Emptor

Partitioning CPU Time:
• If possible, partition CPU resources by assigning cores to guests rather than using scheduler 

weighting or caps. 

CPU Pinning:
• Make the number of Virtual CPUs equal to the number of cores. 

• Use vcpu-pin to assign a guest VCPU to a specific core. 

Remember:
• Dom 0 must service the hardware assigned to it.

• In all guests:

– Switch off unnecessary OS kernel features; i.e., use a tickless kernel…

– Turn off unnecessary OS services … e.g., CentOS* Bluetooth* manager.

– Remove unnecessary drivers; e.g., the USB driver.

Partitioning CPU Time
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Real-Time on Xen

The Chinese Dragon Festival
Photo © Walter Baxter and licensed for reuse under a Creative Commons License.

Recommended reading:

Supporting Soft Real-Time Tasks in the Xen Hypervisor; Min Lee, A.S Krishnakumar, P. Krishnan, Navjot Singh, Shalini Yajnik; 
Georgia Institute of Technology, and Avaya Labs

Extending Virtualization to Communications and Embedded Applications; Edwin Verplanke, Don Banks; Intel Corporation, 
and Cisco Systems, Inc.; Intel Developer Forum (IDF) 2010

Real-Time
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Bubble Memory + NUMA

• The bubble memory driver can arbitrate (share) memory between 
guests. This is not the default behaviour on Xen.

– Page allocation incurs a ~16% performance penalty during  
memory bubbling.

• Mitigate by statically assigning memory to guests. This is the default 
behaviour on Xen.

– maxmem: set maximum amount of memory a domain can be 
allocated

– memory: set initial amount of memory a domain is allocated

NUMA
• Xen is NUMA-aware

– Non-Uniform Memory Architecture (NUMA)

– Switched on in Xen 4.0.0 by default

• Guests are not NUMA-aware (yet!)

– A patchset has been submitted to Xen, to 
enable NUMA awareness for PV and HVM 
guests.

Bubble Memory
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Socket-1
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Partitioning System Memory
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NUMA Optimal Configuration

Optimal Configuration
Guest does not cross sockets, bind guests to cores 
on one socket only.

Sub-optimal Configuration
Guest crosses sockets, guest is bound to cores on 
more than one socket

Guest A crosses sockets
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Partitioning System Memory
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Xen Networking – Software Switch

• Device sharing via the split driver model.

– The backend driver located in the Dom0 is responsible for multiplexing guest access to physical hardware. 

– The frontend driver delivers data to the guest, implementing OS device driver interfaces.

• Xen networking

1. Packets are received by the Dom0 Ethernet* driver . 

2. Packets then passed into the OS bridge driver, the destination Ethernet device is looked up, and the 
packets are forwarded to the Ethernet device driver.

3. Packets are received the Netback driver in Dom0 and pushed onto a Xenbus ring.

4. Packets are popped off the Xenbus ring by Netfront driver and passed to the guest operating system.

Xen software switching mechanism

Hotspot

Xen shared device model

Intel® Architecture
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Partitioning System I/O
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Xen Networking – Hardware Switch

• Single Root I/O Virtualisation  (SR-IOV)
Built on the following technologies available Intel® VT-c enabled 
Network Interface Cards (NIC)

– I/O Acceleration: Intel® VT-d (IOMMU)

– Filtering Technology: Virtual Machine Device Queues (VMDq) -
Hardware MAC Filtering

– Queuing Technology: Multiple RX + TX  Hardware Queues

Each guest has an exclusive NIC that has been virtualised in hardware 
(SR-IOV).

• Xen Passthrough
– PCI configuration space is still owned by Dom0, guest PCI 

configuration read and writes are trapped and fixed by Xen PCI 
passthrough

Xen device passthrough model SR-IOV hardware switching

Intel® Architecture
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Partitioning System I/O
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Software Switch VMDq SR-IOV

MAC Filter
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RX: Receive Queue
TX: Transmission Queue
HW: Hardware Queue
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Hardware vs. Software Packet Switching

• Hardware
– 2 x Intel® Xeon® Processor E5645 (12M Cache, 2.40 GHz, 5.86 GT/s Intel® QuickPath Interconnect) – 80W Thermal Design Power 

(TDP)

– Intel® 82599 10Gb Ethernet Controller with SR-IOV capabilities

• Software
– Measured with Xen 4.0.0 with CentOS 5.4 Guests

– 1 Socket/6 Cores used to route traffic

35x performance increase on small packet sizes

Partitioning System I/O
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Power Usage
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• Hardware
– 2 x Intel® Xeon® Processor L5530 (8M Cache, 2.40 GHz, 5.86 GT/s Intel® QPI) – 60W TDP

– Intel® Server Board S5520HC

– Enermax* EVR1050EWT* Power Supply Unit – 88.61% efficiency

• Software
– Measured with Xen 4.0.0 with CentOS 5.4 Guests and CentOS 5.4 Native

Each guest is bound to 
the cores on a separate socket

Equivalent performance native to virtualised

Power usage
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Conclusions

 Equivalent performance native to virtualised.

 Potential benefits of virtualisation for embedded system 
designers:

– Greater system security.

– Greater system determinism.

– Improved resource isolation.

– Controlled 3rd party platform access.
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