
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Tracking Vulnerabilities
with Buildroot and Yocto

Arnout Vandecappelle

https://docs.google.com/presentation/d/1p5Y5X3u_6f48AndHk2M4C7pDhfpovU67dqdBOxwoc3E

http://creativecommons.org/licenses/by-sa/4.0/
https://i.creativecommons.org/l/by-sa/4.0/88x31.png
https://docs.google.com/presentation/d/1p5Y5X3u_6f48AndHk2M4C7pDhfpovU67dqdBOxwoc3E

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Who is Arnout

Embedded software architect
Focus on Linux OS integration
Mind consultant since 2008
Worked for 40+ customers in multimedia, security, home
automation, satellite, telecom, chips, …
Buildroot maintainer (team of 5)

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Tracking Vulnerabilities
with Buildroot and Yocto
1. Why track vulnerabilities?
2. CVE and CPE databases
3. Tracking vulnerabilities in Buildroot
4. Tracking vulnerabilities in Yocto
5. Tracking vulnerabilities with (SPDX) SBoM
6. Evaluation

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Why track vulnerabilities
in embedded systems?
● IoT → every device is exposed
● Single device failure can bring down entire factory
● 40 new CVEs per day
● Software reuse → single attack applies to numerous devices
● Exposed vulnerability hurts sales
● Regulatory liability is coming
● Also in already released code, to supply timely updates

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

CVE and CPE databases
● People need to be informed about existing vulnerabilities
● CVE = Common Vulnerabilities and Exposures = system for identifying vulnerabilities

Every vulnerability gets assigned a unique number
● NVD = National Vulnerability Database = US government (NIST) database with CVE

information
Many other databases exist, e.g. distro-specific databases

● CVE entry is very unstructured; no real way to identify which software (version) is affected
⇒ Additional database of software packages and versions, linked with CVE database
= CPE = Common Platform Enumeration

Database of CPE entries maintained by NIST
Every software version should have a separate CPE entry
Every CVE has a list of CPEs; version can be a range

cpe:2.3:a:arm:mbed_tls:2.28.0:*:*:*:*:*:*:*

vendor product version

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/National_Vulnerability_Database
https://en.wikipedia.org/wiki/Common_Platform_Enumeration

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Problems with CVE and CPE
But it’s the best we have!
● CPE doesn’t identify a version very well

○ Some software packages don’t do releases, or re-tag
○ Doesn’t take into account patched versions
○ CPE entry needs to be created manually for every release
○ No link to the actual software

● CVE’s CPE information often incorrect
○ Fixed version not (correctly) included in range
○ Missing CPE information
○ Make corrections! https://nvd.nist.gov/info/contact-form

https://nvd.nist.gov/info/contact-form

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

CVE sometimes has incorrect CPE information

https://nvd.nist.gov/vuln/detail/CVE-2021-45450

2.28.0 falls in this range

Actually fixed in both Fedora 36 and 37

https://nvd.nist.gov/vuln/detail/CVE-2021-45450

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Tracking vulnerabilities with Buildroot
make pkg-stats

● Download NVD CVE and CPE database as JSON files
○ Database is cached for 24h

● Cross-reference selected packages based on CPE info
● Check version ranges in CPE info
● Apply exclusions
● (also other, unrelated package info)
● Write result to JSON and HTML

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Example Buildroot vulnerabilities output

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Buildroot vulnerabilities features
● Per package list of CVE entries

with link to NIST database
● CVE match based on version range
● Per package CPE information

(vendor, product, version)
with automatic fallback

● Manually maintained CVE exclusion list
○ Doesn’t exist in Buildroot (e.g. due to distro patch)
○ Patched in Buildroot
○ Vulnerable code not built in Buildroot

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Buildroot vulnerabilities limitations
● Vulnerability info is not generated automatically
● Severity analysis (CVSS) not included
● Need full Buildroot source to generate vulnerability list

○ Including config and custom package definition
● No separation of build-only packages
● Exclusions are in Buildroot source

○ Need to modify source for CVEs discovered later
○ Conditional exclusions often not implemented
○ No way to record configuration-specific exclusions

● No easy way to keep track of previous conclusions

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Practical approach for vulnerability tracking
with Buildroot
1. Generate vulnerability info in CI
2. Before release: evaluate vulnerabilities

○ Copy list to separate document
○ Evaluate if applicable + severity
○ Too high severity: patch + back to step 1

3. After release: regularly re-generate vulnerability info
to discover new vulnerabilities
○ Based on released source code
○ New vulnerabilities that are N/A are not excluded
○ Manually maintain vulnerability tracking document

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Tracking vulnerabilities with Yocto
INHERIT += "cve-check"
include cve-extra-exclusions.inc

● Download NVD CVE database as sqlite database
● For each recipe, look up everything matching CVE_PRODUCT
● Mark as Patched if version doesn’t match

or patch file exists
● Mark as Ignored if excluded explicitly
● Write result to JSON and text

per package + per image

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Example Yocto vulnerabilities output
{
 "package": [
 {
 "name": "libpam",
 "version": "1.5.2",
 [...]
 "products": [
 {
 "product": "linux-pam",
 "cvesInRecord": "Yes"
 }
],
 "issue": [
 {
 "id": "CVE-2009-0579",
 "summary": "Linux-PAM before 1.0.4 does not enforce the minimum password age [...]",
 "scorev2": "4.6",
 "scorev3": "0.0",
 "vector": "LOCAL",
 "status": "Patched",
 "link": "https://nvd.nist.gov/vuln/detail/CVE-2009-0579"
 },
 [...]
 {
 "id": "CVE-2022-28321",
 "summary": "The Linux-PAM package before 1.5.2-6.1 for openSUSE Tumbleweed [...] NOTE: the relevance of this issue is largely
limited to openSUSE Tumbleweed and openSUSE Factory; it does not affect Linux-PAM upstream.",
 "scorev2": "0.0",
 "scorev3": "9.8",
 "vector": "NETWORK",
 "status": "Unpatched",
 "link": "https://nvd.nist.gov/vuln/detail/CVE-2022-28321"
 }
]
 },

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Yocto vulnerabilities features
{
 "package": [
 {
 "name": "libpam",
 "version": "1.5.2",
 [...]
 "products": [
 {
 "product": "linux-pam",
 "cvesInRecord": "Yes"
 }
],
 "issue": [
 {
 "id": "CVE-2009-0579",
 "summary": "Linux-PAM before 1.0.4 does not enforce the minimum password age [...]",
 "scorev2": "4.6",
 "scorev3": "0.0",
 "vector": "LOCAL",
 "status": "Patched",
 "link": "https://nvd.nist.gov/vuln/detail/CVE-2009-0579"
 },
 [...]
 {
 "id": "CVE-2022-28321",
 "summary": "The Linux-PAM package before 1.5.2-6.1 for openSUSE Tumbleweed [...] NOTE: the relevance of this issue is largely
limited to openSUSE Tumbleweed and openSUSE Factory; it does not affect Linux-PAM upstream.",
 "scorev2": "0.0",
 "scorev3": "9.8",
 "vector": "NETWORK",
 "status": "Unpatched",
 "link": "https://nvd.nist.gov/vuln/detail/CVE-2022-28321"
 }
]
 },

Extra info for evaluation

Link to NIST database

Status based on version range

Match only on product (unless vendor is given)

Only packages in that specific image (no -native)

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Yocto vulnerabilities limitations
● Vulnerability info is only generated as part of build
● Need all layers to generate vulnerability list
● Exclusions are in Yocto (or custom) source
● Need some additional tooling to process JSON files

○ Because patched/ignored are included, contains 1000s of vulns

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Tracking vulnerabilities with SPDX SBoM
SBoM (Software Bill of Materials)
contains all packages + their versions
⇒ Perfect to as a source for vulnerability information

Google Online Security Blog: SBOM in Action: finding vulnerabilities
with a Software Bill of Materials

Using spdx-to-osv
or osv-scanner

https://security.googleblog.com/2022/06/sbom-in-action-finding-vulnerabilities.html
https://security.googleblog.com/2022/06/sbom-in-action-finding-vulnerabilities.html
https://github.com/spdx/spdx-to-osv/
https://github.com/google/osv-scanner

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

OSV (Open Source Vulnerabilities)
Alternative to CVE database
● Simplify creation of vulnerability entries
● Accurately track upstreams and versions

○ Link to upstream repository
○ Commit hashes in addition to version numbers

● Package identification through ecosystems
○ PyPI, npm, crates.io, …
○ Alpine, AlmaLinux, Debian, …
○ OSS-Fuzz

● Unambiguously determine if your software is vulnerable
● Tooling

○ Using SPDX and CycloneDX SBoM
○ Using dependencies in source (Cargo, Go, Python, …)
○ REST API to query database

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Existing OSV tools don’t work
● Buildroot doesn’t generate SPDX SBoM
● Yocto’s SPDX is not compatible with OSV

○ SPDX doesn’t fully specify how to uniquely identify a package
○ Yocto uses name, version, and CPE externalRef

○ osv-scanner expects package identified with purl
○ spdx-to-osv isn’t able to parse cross-document relationships

 "name": "acl",
 "versionInfo": "2.3.1",
 "downloadLocation": "https://download.savannah.gnu.org/releases/acl/acl-2.3.1.tar.gz",
 "externalRefs": [{
 "referenceCategory": "SECURITY",
 "referenceLocator": "cpe:2.3:a:*:acl:2.3.1:*:*:*:*:*:*:*",
 "referenceType": "http://spdx.org/rdf/references/cpe23Type"
 }],
 "homepage": "http://savannah.nongnu.org/projects/acl/",

https://github.com/package-url/purl-spec

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Other (theoretical) problems with OSV
● Ecosystem must actively register vulnerabilities

○ 31K CVEs tracked on security-tracker.debian.org
9K OSVs tracked in Debian ecosystem

○ Distros only register vulnerabilities that apply to them
○ Many CVEs never registered anywhere in OSV

● Same vulnerability registered in different ecosystems
○ CVE-2019-6706 in Alpine ecosystem
○ RLSA-2019:3706 in Rocky Linux ecosystem
○ DLA-3469-1 in Debian ecosystem includes several CVEs

● Ecosystem has their own package identification scheme
○ E.g. libcurl vs curl

Tracking vulnerabilities with Buildroot and YoctoArnout Vandecappelle - ELC 2023

Conclusions
● Buildroot and yocto have tooling for CVE tracking

using CPE ID
● Focused on tracking in Buildroot/yocto itself

not on tracking by the user
● OSV and SPDX show promise for improved tracking

but tooling is not quite there yet

