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Alexandre Belloni

▶ Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Bootloader, Linux kernel, Yocto Project,

Buildroot
▶ Complete Linux BSP development
▶ Hardware support in bootloader/Linux
▶ Strong open-source focus: upstreaming and

contributions
▶ Freely available training materials

▶ Open-source contributor
▶ Maintainer for the Linux kernel RTC

subsystem
▶ Co-Maintainer of kernel support for

Microchip (ARM and MIPS) processors
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OpenEmbedded and Yocto Project best practices

Distributions
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Poky
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Poky

▶ Yocto Project is an entity, not something you can use.
▶ Poky is the reference distribution, the code that is downladed and used.
▶ As a reference distribution, it is not tailored to your system (e.g. it always

includes opengl)
▶ It can generate demo images but is not meant to be used as-is on production

systems.
▶ The included features are not stable (e.g. it switched from xorg to wayland)
▶ Poky bundles Openembedded-core, bitbake and two very small layers:

▶ meta-yocto-bsp is a BSP layer for reference boards from the Yocto Project
members

▶ meta-poky is a distro layer with four distributions: poky, poky-tiny,
poky-bleeding, poky-altcfg
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Poky

▶ For your project, not using Poky has some advantages:
▶ when reporting bugs, it is necessary to reproduce with a nodistro build
▶ it is easier to start from nodistro and create a distribution than tuning a

distribution including poky.conf
▶ it is easier to work with the oe-core repository when sending patches upstream
▶ Confidentiality, Poky defines PREMIRRORS that point to

http://downloads.yoctoproject.org/mirror/sources/, it will leak the name
of everything that is fetched using version control.

▶ The main drawback is having to match the oe-core and bitbake branches manually.
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Creating your own distribution

▶ Not that difficult, simply have conf/distro/<distro_name>.conf
▶ Used to define the distribution wide policies:

▶ Toolchain (including libc) selection
▶ init selection
▶ DISTRO_FEATURES
▶ PREFERRED_PROVIDERS
▶ PACKAGE_CLASSES
▶ QA checks with WARN_QA and ERROR_QA
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OpenEmbedded and Yocto Project best practices

local.conf
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local.conf

▶ local.conf is really for local configuration (CPU number, disk space).
▶ Avoid the numerous tutorials saying otherwise
▶ The main reason is distribution of the changes and reproducibility of the build.
▶ Also huge drawback, a change in local.conf makes bitbake parse all the recipes

again.
▶ It is fine to carry changes in local.conf for development/testing.
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local.conf - site.conf

▶ site.conf is for site wide configuration (proxies, mirrors, shared sstate-cache
location).

▶ Unfortunately, it suffers from the same local.conf distribution drawback.
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local.conf - image recipes

▶ The most abused variable in local.conf is IMAGE_INSTALL_append (seen in
tutorials from SoM vendors).

▶ This is not even easy for beginners due to parse order.
▶ The solution is simply to create your own image recipe as soon as the

core-image-*.bb recipes are not enough anymore.
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local.conf - machine configuration

All the machine related varibales should go in the machine configuration:
▶ PREFERRED_PROVIDER_virtual/kernel
▶ PREFERRED_PROVIDER_virtual/bootloader
▶ PREFERRED_VERSION_linux-*
▶ IMAGE_FSTYPES
▶ In a few cases, IMAGE_INSTALL_append, for example, to actually install the

kernel in the root filesystem.
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local.conf - distro configuration

The other variables should go in the distro configuration:
▶ PREFERRED_PROVIDER_*
▶ PREFERRED_VERSION_*
▶ PACKAGECONFIG_pn-*
▶ INCOMPATIBLE_LICENSE
▶ LICENSE_FLAGS_WHITELIST
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OpenEmbedded and Yocto Project best practices

Release management
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Release management

There are multiple tasks that OE/bitbake based projects let you do on your own to
ensure build reproducibility:
▶ Code distribution and project setup.
▶ Release tagging

A separate tool is needed for that, usual solutions are:
▶ combo-layer, as done by Poky:

https://wiki.yoctoproject.org/wiki/Combo-layer
▶ git submodules + setup script. Great example in YOE:

https://github.com/YoeDistro/yoe-distro
▶ repo and templateconf or setup script
▶ kas
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repo

▶ repo is used in Android to distribute its source code, which is split into many git
repositories. It’s a wrapper to handle several git repositories at once.

▶ The repo configuration is stored in manifest file, usually available in its own git
repository.

▶ It could also be in a specific branch of your custom layer.
▶ It only handles fetching code, handling local.conf and bblayers.conf is done

separately
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Manifest example

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

<default sync-j="4" revision="dunfell"/>

<remote fetch="https://github.com/openembedded" name="oe"/>
<remote fetch="https://github.com/Freescale" name="freescale"/>
<remote fetch="ssh://git@server.com" name="private"/>

<project remote="freescale" name="meta-freescale" path="sources/meta-freescale"/>
<project remote="oe" name="openembedded-core" path="sources/openembedded-core"/>
<project remote="oe" name="bitbake" path="sources/openembedded-core/bitbake"

revision="1.46" />
<project remote="oe" name="meta-openembedded" path="sources/meta-openembedded"/>

<project remote="private" name="meta-custom" path="sources/meta-custom">
<copyfile dest="setup-environment" src="buildconf/setup-environment"/>

</project>
</manifest>
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repo: release

To tag a release, a few steps have to be taken:
▶ Optionally tag the custom layers
▶ For each project entry in the manifest, set the revision parameter to either a tag

or a commit hash.
▶ Commit and tag this version of the manifest.
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kas

▶ Specific tool developed by Siemens for OpenEmbedded:
https://github.com/siemens/kas

▶ Will fetch layers and build the image in a single command
▶ Uses a single JSON or YAML configuration file part of the custom layer
▶ Can generate and run inside a Docker container
▶ Can setup local.conf and bblayers.conf
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kas configuration

header:
version: 8

machine: mymachine
distro: mydistro
target:
- myimage

repos:
meta-custom:

bitbake:
url: "https://git.openembedded.org/bitbake"
refspec: "1.46"

openembedded-core:
url: "https://git.openembedded.org/openembedded-core"
refspec: dunfell
layers:

meta:
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kas configuration

meta-freescale:
url: "https://github.com/Freescale/meta-freescale"
refspec: dunfell

meta-openembedded:
url: http://git.openembedded.org/meta-openembedded
refspec: dunfell
layers:

meta-oe:
meta-python:
meta-networking:
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Network access

Another task when creating a release is to ensure all the code is available internally,
either on the local build machine or on local mirrors.
▶ Ensure there is no SRCREV = "${AUTOREV}" in any recipe.
▶ Set BB_GENERATE_MIRROR_TARBALLS = "1" to generate tarballs of the git

repositories in DL_DIR.
▶ Fetch all the source (e.g using bitbake -c fetchall <target>).
▶ Archive DL_DIR, make the tarballs available internally.
▶ Optionally build once with BB_NO_NETWORK = "1" to check for missing tarballs or

remaining AUTOREV.
▶ Point bitbake to your internal mirrors, using PREMIRRORS or

INHERIT += "own-mirrors" with SOURCE_MIRROR_URL
▶ Build the release, from scratch using BB_FETCH_PREMIRRORONLY = "1".
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Build optimization
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Sharing the sstate-cache

It is possible to share the shared state cache across multiple build machines:
▶ Set up CI or nightly builds.
▶ Use the DL_DIR to populate the PREMIRRORS.
▶ Share the sstate-cache (SSTATE_DIR) over NFS or HTTP.
▶ Setup SSTATE_MIRRORS to point to that share

This works well if all the hosts are similar as this influence checksums. Containers will
help.
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Cleaning the sstate-cache

The sstate-cache is growing over time. It is possible to clean old data with:

$ ./scripts/sstate-cache-management.sh --remove-duplicated -d \
--cache-dir=<SSTATE_DIR>
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License compliance
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Listing licenses

OpenEmbbedded will generate a manifest of all the licenses of the software present on
the target image in LICENSE_DIRECTORY/IMAGE_NAME/license.manifest

PACKAGE NAME: busybox
PACKAGE VERSION: 1.31.1
RECIPE NAME: busybox
LICENSE: GPLv2 & bzip2-1.0.6

PACKAGE NAME: dropbear
PACKAGE VERSION: 2019.78
RECIPE NAME: dropbear
LICENSE: MIT & BSD-3-Clause & BSD-2-Clause & PD
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Providing license text

To include the license text in the root filesystem either:
▶ Use COPY_LIC_DIRS = "1" and COPY_LIC_MANIFEST = "1"
▶ or use LICENSE_CREATE_PACKAGE = "1" to generate packages including the

license and install the required license packages.
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Providing sources

OpenEmbbedded provides the archiver class to generate tarballs of the source code:
▶ Use INHERIT += "archiver"
▶ Set the ARCHIVER_MODE variable, the default is to provide patched sources. To

provide configured sources:

ARCHIVER_MODE[src] = "configured"
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Questions? Suggestions? Comments?

Alexandre Belloni
alexandre.belloni@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2020/elce/belloni-yocto-best-practices/
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