
Embedded Linux Conference Europe 2020

OpenEmbedded and
Yocto Project best
practices
Alexandre Belloni
alexandre.belloni@bootlin.com

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/30

 



Alexandre Belloni

▶ Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Bootloader, Linux kernel, Yocto Project,

Buildroot
▶ Complete Linux BSP development
▶ Hardware support in bootloader/Linux
▶ Strong open-source focus: upstreaming and

contributions
▶ Freely available training materials

▶ Open-source contributor
▶ Maintainer for the Linux kernel RTC

subsystem
▶ Co-Maintainer of kernel support for

Microchip (ARM and MIPS) processors

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/30

 



OpenEmbedded and Yocto Project best practices

Distributions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/30

 



Poky

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/30

 



Poky

▶ Yocto Project is an entity, not something you can use.
▶ Poky is the reference distribution, the code that is downladed and used.
▶ As a reference distribution, it is not tailored to your system (e.g. it always

includes opengl)
▶ It can generate demo images but is not meant to be used as-is on production

systems.
▶ The included features are not stable (e.g. it switched from xorg to wayland)
▶ Poky bundles Openembedded-core, bitbake and two very small layers:

▶ meta-yocto-bsp is a BSP layer for reference boards from the Yocto Project
members

▶ meta-poky is a distro layer with four distributions: poky, poky-tiny,
poky-bleeding, poky-altcfg

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/30

 



Poky

▶ For your project, not using Poky has some advantages:
▶ when reporting bugs, it is necessary to reproduce with a nodistro build
▶ it is easier to start from nodistro and create a distribution than tuning a

distribution including poky.conf
▶ it is easier to work with the oe-core repository when sending patches upstream
▶ Confidentiality, Poky defines PREMIRRORS that point to

http://downloads.yoctoproject.org/mirror/sources/, it will leak the name
of everything that is fetched using version control.

▶ The main drawback is having to match the oe-core and bitbake branches manually.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/30

 

http://downloads.yoctoproject.org/mirror/sources/


Creating your own distribution

▶ Not that difficult, simply have conf/distro/<distro_name>.conf
▶ Used to define the distribution wide policies:

▶ Toolchain (including libc) selection
▶ init selection
▶ DISTRO_FEATURES
▶ PREFERRED_PROVIDERS
▶ PACKAGE_CLASSES
▶ QA checks with WARN_QA and ERROR_QA

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/30

 



OpenEmbedded and Yocto Project best practices

local.conf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/30

 



local.conf

▶ local.conf is really for local configuration (CPU number, disk space).
▶ Avoid the numerous tutorials saying otherwise
▶ The main reason is distribution of the changes and reproducibility of the build.
▶ Also huge drawback, a change in local.conf makes bitbake parse all the recipes

again.
▶ It is fine to carry changes in local.conf for development/testing.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/30

 



local.conf - site.conf

▶ site.conf is for site wide configuration (proxies, mirrors, shared sstate-cache
location).

▶ Unfortunately, it suffers from the same local.conf distribution drawback.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/30

 



local.conf - image recipes

▶ The most abused variable in local.conf is IMAGE_INSTALL_append (seen in
tutorials from SoM vendors).

▶ This is not even easy for beginners due to parse order.
▶ The solution is simply to create your own image recipe as soon as the

core-image-*.bb recipes are not enough anymore.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/30

 



local.conf - machine configuration

All the machine related varibales should go in the machine configuration:
▶ PREFERRED_PROVIDER_virtual/kernel
▶ PREFERRED_PROVIDER_virtual/bootloader
▶ PREFERRED_VERSION_linux-*
▶ IMAGE_FSTYPES
▶ In a few cases, IMAGE_INSTALL_append, for example, to actually install the

kernel in the root filesystem.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/30

 



local.conf - distro configuration

The other variables should go in the distro configuration:
▶ PREFERRED_PROVIDER_*
▶ PREFERRED_VERSION_*
▶ PACKAGECONFIG_pn-*
▶ INCOMPATIBLE_LICENSE
▶ LICENSE_FLAGS_WHITELIST

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/30

 



OpenEmbedded and Yocto Project best practices

Release management

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/30

 



Release management

There are multiple tasks that OE/bitbake based projects let you do on your own to
ensure build reproducibility:
▶ Code distribution and project setup.
▶ Release tagging

A separate tool is needed for that, usual solutions are:
▶ combo-layer, as done by Poky:

https://wiki.yoctoproject.org/wiki/Combo-layer
▶ git submodules + setup script. Great example in YOE:

https://github.com/YoeDistro/yoe-distro
▶ repo and templateconf or setup script
▶ kas

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/30

 

https://wiki.yoctoproject.org/wiki/Combo-layer
https://github.com/YoeDistro/yoe-distro


repo

▶ repo is used in Android to distribute its source code, which is split into many git
repositories. It’s a wrapper to handle several git repositories at once.

▶ The repo configuration is stored in manifest file, usually available in its own git
repository.

▶ It could also be in a specific branch of your custom layer.
▶ It only handles fetching code, handling local.conf and bblayers.conf is done

separately

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/30

 



Manifest example

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

<default sync-j="4" revision="dunfell"/>

<remote fetch="https://github.com/openembedded" name="oe"/>
<remote fetch="https://github.com/Freescale" name="freescale"/>
<remote fetch="ssh://git@server.com" name="private"/>

<project remote="freescale" name="meta-freescale" path="sources/meta-freescale"/>
<project remote="oe" name="openembedded-core" path="sources/openembedded-core"/>
<project remote="oe" name="bitbake" path="sources/openembedded-core/bitbake"

revision="1.46" />
<project remote="oe" name="meta-openembedded" path="sources/meta-openembedded"/>

<project remote="private" name="meta-custom" path="sources/meta-custom">
<copyfile dest="setup-environment" src="buildconf/setup-environment"/>

</project>
</manifest>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/30

 



repo: release

To tag a release, a few steps have to be taken:
▶ Optionally tag the custom layers
▶ For each project entry in the manifest, set the revision parameter to either a tag

or a commit hash.
▶ Commit and tag this version of the manifest.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/30

 



kas

▶ Specific tool developed by Siemens for OpenEmbedded:
https://github.com/siemens/kas

▶ Will fetch layers and build the image in a single command
▶ Uses a single JSON or YAML configuration file part of the custom layer
▶ Can generate and run inside a Docker container
▶ Can setup local.conf and bblayers.conf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/30

 

https://github.com/siemens/kas


kas configuration

header:
version: 8

machine: mymachine
distro: mydistro
target:
- myimage

repos:
meta-custom:

bitbake:
url: "https://git.openembedded.org/bitbake"
refspec: "1.46"

openembedded-core:
url: "https://git.openembedded.org/openembedded-core"
refspec: dunfell
layers:

meta:

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/30

 



kas configuration

meta-freescale:
url: "https://github.com/Freescale/meta-freescale"
refspec: dunfell

meta-openembedded:
url: http://git.openembedded.org/meta-openembedded
refspec: dunfell
layers:

meta-oe:
meta-python:
meta-networking:

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/30

 



Network access

Another task when creating a release is to ensure all the code is available internally,
either on the local build machine or on local mirrors.
▶ Ensure there is no SRCREV = "${AUTOREV}" in any recipe.
▶ Set BB_GENERATE_MIRROR_TARBALLS = "1" to generate tarballs of the git

repositories in DL_DIR.
▶ Fetch all the source (e.g using bitbake -c fetchall <target>).
▶ Archive DL_DIR, make the tarballs available internally.
▶ Optionally build once with BB_NO_NETWORK = "1" to check for missing tarballs or

remaining AUTOREV.
▶ Point bitbake to your internal mirrors, using PREMIRRORS or

INHERIT += "own-mirrors" with SOURCE_MIRROR_URL
▶ Build the release, from scratch using BB_FETCH_PREMIRRORONLY = "1".

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/30

 



OpenEmbedded and Yocto Project best practices

Build optimization

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/30

 



Sharing the sstate-cache

It is possible to share the shared state cache across multiple build machines:
▶ Set up CI or nightly builds.
▶ Use the DL_DIR to populate the PREMIRRORS.
▶ Share the sstate-cache (SSTATE_DIR) over NFS or HTTP.
▶ Setup SSTATE_MIRRORS to point to that share

This works well if all the hosts are similar as this influence checksums. Containers will
help.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/30

 



Cleaning the sstate-cache

The sstate-cache is growing over time. It is possible to clean old data with:

$ ./scripts/sstate-cache-management.sh --remove-duplicated -d \
--cache-dir=<SSTATE_DIR>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/30

 



OpenEmbedded and Yocto Project best practices

License compliance

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/30

 



Listing licenses

OpenEmbbedded will generate a manifest of all the licenses of the software present on
the target image in LICENSE_DIRECTORY/IMAGE_NAME/license.manifest

PACKAGE NAME: busybox
PACKAGE VERSION: 1.31.1
RECIPE NAME: busybox
LICENSE: GPLv2 & bzip2-1.0.6

PACKAGE NAME: dropbear
PACKAGE VERSION: 2019.78
RECIPE NAME: dropbear
LICENSE: MIT & BSD-3-Clause & BSD-2-Clause & PD

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/30

 



Providing license text

To include the license text in the root filesystem either:
▶ Use COPY_LIC_DIRS = "1" and COPY_LIC_MANIFEST = "1"
▶ or use LICENSE_CREATE_PACKAGE = "1" to generate packages including the

license and install the required license packages.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/30

 



Providing sources

OpenEmbbedded provides the archiver class to generate tarballs of the source code:
▶ Use INHERIT += "archiver"
▶ Set the ARCHIVER_MODE variable, the default is to provide patched sources. To

provide configured sources:

ARCHIVER_MODE[src] = "configured"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/30

 



Questions? Suggestions? Comments?

Alexandre Belloni
alexandre.belloni@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2020/elce/belloni-yocto-best-practices/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/30

http://bootlin.com/pub/conferences/2020/elce/belloni-yocto-best-practices/

	OpenEmbedded and Yocto Project best practices
	Distributions
	local.conf
	Release management
	Build optimization
	License compliance


