Linux DVB API Version 4
http://www.linuxtv.org

Michael Hunold
hunold@linuxtv.org
Contents

• DVB and Digital TV
• History
• About LinuxTV.org
• Linux DVB API v3 status and problems
• Linux DVB API v4 design and structure
• Concepts
• Current status and todo
• Example
• Helping the project
What is DVB?

• Digital Video Broadcast http://www.dvb.org/
• delivery of any digitized informations to the home
 – video, audio, subtitles
 – service informations, program guide
 – multimedia applications, ...
• managed by Digital Video Broadcasting Project
 – industry-led consortium of broadcasters, manufacturers, network
 operators, software developers, regulatory bodies and others
• based on MPEG2 transport streams
• different means of transportation
 – DVB-C \Rightarrow cable
 – DVB-S \Rightarrow satellite
 – DVB-T \Rightarrow terrestrial
Data flow

- MPEG2 transport stream (TS)
- data packets with 188 bytes
DVB-S adoption map

Used with permission of the DVB project, http://www.dvb.org
DVB-C adoption map

26.01.2005

Used with permission of the DVB project, http://www.dvb.org
DVB-T adoption map

Used with permission of the DVB project, http://www.dvb.org
Related technologies

- **IP-over-DVB** ("SkyDSL", Internet via satellite)
 - MPE (Multi Protocol Encapsulation, ETSI standard)
 - ULE (Ultra Light Encapsulation, IETF draft)

- **DVB-over-IP**
 - MPEG2 TS distributed via Ethernet
 - RTP streaming
 - DVB-IPI (ETSI TR 102 033)

- **general datacasting**
 - SSU (System Software Update)
 - proprietary protocols

- **DVD playback** (MPEG2-PS and MPEG1)
History

• 1998
 – Technotrend GmbH develops popular DVB PCI card

• 1999
 – Siemens produces cards based on Technotrend GmbH design
 – first Linux driver as diploma thesis, ad hoc API based on Video4Linux

• 2000
 – Nokia develops DVB API for http://www.ostdev.net/
 – Convergence GmbH implements Nokia DVB API for Siemens card
 – community project LinuxTV.org is launched

• 2001
 – ongoing development results in Linux DVB API v3
History

- **2002**
 - Linux DVB API v3 is included in Linux kernel 2.5.44

- **2003**
 - Convergence and Toshiba start development of Linux DVB v4 API
 - Public discussion of API features on the linux-dvb mailing list

- **2004**
 - Linux DVB v4 API is nearly fully specified
 - Generic core modules and sample driver for Siemens card available

- **2005**
 - First real-world implementation on Toshiba TC90400 MPEG2 decoder chipset („Donau“)
What is LinuxTV.org?

- started and hosted by Convergence GmbH until mid 2004
- community project by DVB enthusiasts and developers interested in Digital TV
- open, independent, non-profit
- hosts other projects related to Digital TV
 - MPEG2 TS/PS multiplexer
 - DSM-CC / MHP object carousel generator
LinuxTV.org goals

• specify complete API for
 – set-top-box (STB)
 – Integrated Digital TV (IDTV)

• standardize support for peripheral hardware
 – as little as possible proprietary APIs and private extensions

• promote existing APIs where possible
 – Linux Input Layer for ir and frontpanel
 – DirectFB for scaler, video encoder, video layer mixer

• create new APIs where necessary
 – analog tv integration
 – avmux
 – smartcard interface
 – video encoder and vbi
 – DVD and subtitle processing unit (SPU) support
Linux DVB

• no complete multimedia framework
 – graphics output and video scalers are handled by DirectFB
 – analog uncompressed video is currently not supported
 – no handling of arbitrary multimedia data

• no support for auxiliary hardware in core API
 – avmux
 – smartcard interface

• means to control digital tv hardware easily and efficiently
 – support for PCI/USB DVB extension cards
 – support for dedicated set-top-box (STB) chipsets
 – support for integrated digital TV (IDTV) solutions

• hardware independent driver framework
• kernel level only
Linux DVB

- Motivation
 - make life of software and hardware developers easier
 - provide a consistent abstraction layer for different hardware

- Benefits
 - Software companies
 - easier support for different hardware platforms
 - hardware independent applications and middleware
 - Hardware vendors
 - easier software support for existing chipsets
 - smooth transition from one chipset generation to the next
 - new business opportunities by faster time-to-market
Linux DVB API v3 users

• Open-source projects
 – PC
 • vdr (video disk recorder)
 • mplayer and xine
 • kaxtv, mythtv, klear, xawtv 4.0
 – Embedded Linux platforms on PowerPC-based „dbox2“
 • Neutrino, Enigma ⇒ http://wiki.tuxbox.org/ (german)
 – platform independent
 • dvbstream, dvbsnoop

• Commercial users
 – Dreambox using IBM Pallas/Vulcan (PowerPC)
Present situation

• PCs and embedded platforms are diverging
 – “budget” PCI cards on PCs
 • provide full, raw TS
 • all decoding and processing is done by main CPU
 – Embedded platform STB/IDTV chipsets
 • data is demultiplexed for direct application use
 • specialized hardware or firmware relieves main CPU

• no new „full-featured“ DVB PCI/USB card is in sight

• new challenges with supporting embedded platforms running Linux

⇒ Linux DVB v4 API heads towards highly-integrated embedded STB and IDTV systems
Linux DVB API v3 problems

- focussed on Siemens DVB card
- namespace inconsistencies
- inconsistent remains of ad-hoc DVD/SPU support
- legacy OSD API designed for Siemens DVB card only
- superfluous internal DVB kernel demux layer
- very limited support for modern hardware
 - multiple frontends, video and audio decoders
- explicit source-sink connections not possible
- no support for special recording hardware and event logging
- all data transfers through ringbuffers, no zero-copy DMA
Linux DVB API v4 design

- Linux/Posix character device interface /dev/dvb/adapter0/...
 - input: frontend, memory
 - processing: ci, demux
 - decoding: video, audio
 - output: audio mixer, spdif, dvb-net
- source/sink connection via I/O controls
- zero copy DMA via `mmap()`
Implementation structure

- **DVB core**
 - implements hardware independent functionality
 - does sanity checks and parameter checking
 - enforces policy restrictions
 - different levels of abstraction
 - demux, frontend (high)
 - video (low)

- **external APIs**
 - graphics, scaler and video output handled by DirectFB
Input devices

• provide data for stream processing
• frontend input
 – controls tuner and demodulator hardware
 – supports satellite (DVB-S), cable (DVB-C) and terrestrial (DVB-T)
 – in case of satellite equipment (LNB, dish rotor) control via Eutelsat’s DiSEqC protocol
• memory input
 – zero-copy DMA for HDD playback or network streaming

<table>
<thead>
<tr>
<th>frontend</th>
<th>ci</th>
<th>demux</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory („HDD“)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>demux</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dvb net</th>
</tr>
</thead>
<tbody>
<tr>
<td>audio decoder</td>
</tr>
<tr>
<td>video decoder</td>
</tr>
</tbody>
</table>

TOSHIBA
Processing devices

• ci (common interface)
 – slot handling for common interface (CI) PCMCIA slot
 – simple transport layer message interface

• demux (demultiplexer)
 – processes one input stream from frontend or memory input
 – outputs to multiple destinations
 – PID filter (TS packet or payload only), DVB section filter
 – PS and multiplexed PES input with stream id filter
 – recording filter for HDD recording with event logging support
 – decoding feeds for live tv (video, audio, teletext/VBI insertion)
Decoding devices

- **audio**
 - ALSA and OSS are not suitable for embedded STBs/IDTVs
 - provides decoding and downmixing
 - provides PCM playback and optional MP3 playback
 - optional postprocessing
 - virtual surround
 - dynamic compression etc.
 - S/P-DIF and I2S inputs

![Diagram of decoding devices]

TOSHIBA
Decoding devices

- **video**
 - usually MPEG 1/2 decoder
 - limited presentation support
 - auto-scaling, pan & scan
 - trickmode support for memory input
 - fast forward, (fast) reverse, slowmotion
 - stillpicture and dripfeed support
 - video event handling
 - sequence header changes
 - extract user data like active format description (AFD)
 - video frame header meta data query
Output devices

- (audio) mixer
 - mix 5.1 and stereo signals to TV, VCR and headphone outputs
 - tone control, speech enhancement, test tone generator, ...

- spdif
 - S/P-DIF header control
 - connectable to various sources

- net
 - MPE and ULE decapsulation
 - data packets are provided to the Linux network stack
Control concept

• POSIX device interface
• `open()`/`close()` to access devices
 – with “write access” once
 – with “read only” multiple times
• `ioctl()` to control device
• `read()` to pull stream (section filter only)
• `mmap()` for zero-copy DMA access to data
 – get recording data
 – provide playback data

```
fds = open(`/dev/dvb/adapter0/video0`, O_WRONLY);
ioctl(fds, DVB_VIDEO_PLAY, 1000);
```
Connection concept

- **DVB_xxx_SET_SOURCE** I/O control connects devices to input sources by passing a file descriptor
- common for all processing, decoding and output devices
- only possible on a device open with write permissions

```c
src = open('/dev/dvb/.../frontend0', O_RDONLY);
dst = open('dev/dvb/.../demux0', O_WRONLY);
ioctl (dst, DVB_DEMUX_SET_SOURCE, &src);
```
Capability concept

- different hardware has different capabilities
- sometimes even different devices of the same kind have different capabilities
- applications need to be able to distinguish devices and hardware
- `DVB_xx_x_GET_CAPS IOCTL` exposes device capabilities

```c
vcaps.cap = DVB_VIDEO_CAP_SOURCE_FORMATS;
ioctl(fd, DVB_VIDEO_GET_CAPS, &vcaps);
if (vcaps.val & DVB_VIDEO_xx_x_CAPABLE) {
    // device supports xxx
```
Filter concept for demux devices

- opening the demux `O_WRONLY` offers the demux device itself
- opening the demux `O_RDONLY` adds a new filter
 - section filter
 - recording filter
 - PES filter
 - decoding feeds
- specific I/O controls set filter parameters or change them
- closing the filedescriptor removes filter

```c
struct dvb_demux_section_filter f;
flt = open('/dev/dvb/adapter/demux0', O_RDONLY);
[... set filter options...]
ioctl(flt, DVB_DEMUX_SET_SECTION_FILTER, &f);
[... do something ...]
close(fd);
```
Current Linux DVB API v4 status

• available via CVS from linuxtv.org (“dvb-kernel-v4”)
• supports 2.4 and 2.6 kernels
• major requested functionality is implemented
• continuing discussion on Linux DVB mailing list
 – current and future API development
 – remaining implementation details
• prototype driver for Siemens card
 – PC platform for easy evaluation
 – software emulation to compensate for missing hardware support
• API specification document is work-in-progress
 – auto generated version with few annotations is available
• complete software emulation of DVB device is planned
 – overcome Siemens card drawbacks (no multiple tuner support)

26.01.2005
TOSHIBA
Linux DVB todo

- Linux 2.6 kernel integration
- finish API specification
 - multi client support for section filter data
 - CI routing
 - support for other MPEG2 TS based formats
 - ATSC (USA)
 - ISDB (Japan)
- CE Linux Forum
 - discuss Linux DVB in technical working group
Helping Linux DVB and LinuxTV.org

• open, vendor independent, non-profit project
 – discussions and proposals are very welcome
 – thrives on the contribution of its participants
 – follows the spirit of Linux development model
 – always open to receive proposals for API enhancements

• What you can do
 – subscribe to the linux-dvb mailing list
 – engage in discussions and share your opinion
 – do code review and send patches to the mailing list
 – get a CVS account for larger contributions
 – don't wait for others to do your work
Real world example

- Toshiba TC90400 “Donau“ Digital TV System-on-a-Chip for STB and IDTV solutions
Thank you

• Thank you for your attention
• Any questions?

Related Links
• http://www.linuxtv.org
• http://www.directfb.org
Abbreviations

- API = application programming interface
- CI/CA = common interface, common access
- CVS = concurrent versioning system
- DMA = direct memory access
- DSM-CC = digital storage media command and control
- DVB = digital video broadcast
- HDD = hard disk drive
- IDTV = integrated digital television
- MHP = multimedia home platform
- OSD = on-screen display
- PES = packetized elementary stream
- PS = program stream
- SPU = subtitle processing unit
- S/P-DIF = Sony/Philips digital interface
- STB = set top box
- TS = transport stream