

'Pro-Maker style' drones for science

J Wyngaard

Postdoctoral scholar University of Southern California

Overview

- Drones in Earth Science Currently
 - Examples
 - Steady Style
- 'Pro-Maker Style' Drones for science
 - Solved problems
 - Unsolved problems
 - Some solutions SSEDD
- Conclusions and Future Plans

Drones in Earth Science:

- Benefits
 - Scientific:
 - Lower environmental impact
 - Access
 - Temporal Resolution (repeatability)
 - Spatial Resolution
 - Practical:
 - Improved human saftey
 - Costs saving

LANDSAT 8 (30m)

NAIP 2010 (1m)

UAS 400ft(5cm)

UAS 250ft(2.5m)

USGS: Unmanned Aircraft Systems (UAS) Activities in Earth Sciences - June 2015

Volcanic Plumes

- Dr Diaz, NASA AIMES, University of Costa Rica
 - Real time monitoring of Volcano status
 - Validation of ASTER

 (Advanced Spaceborne
 Thermal Emission and
 Reflection) instrument on
 Terra spacecraft
- Dragon Eye (ex military)
 - 2.6kg
- Vector Wing 100
 - 8x5ft
 - 100kg payload

3D SO2 concentration plots- "Unmanned Aerial Mass Spectrometer Systems for In-Situ Volcanic Plume Analysis" Jorge Andres Diaz et al, AMSA 2015

Polar Sciences

- Glacier mass monitoring
- Glacier Ablation zone monitoring
- Wild life population tracking
- Mapping

"But there I was, doing quick order-ofmagnitude approximations in my head while our quad-copter lifted off into the air to single-handedly create a data

Agriculture

15/10/15 Pre Manure 26/10/15 Post Manure

Agriculture is the largest contributor of non-CO₂ GHGs.

Food systems emissions contribute 19-29% OF TOTAL GHG EMISSIONS.

NDVI University of Vermont, Spatial Analysis Lab, 2015

Agriculture

- Green House gas emmisions monitoring:
 - 20min/chamber measurement
 - 10 chambers

- ...

So Many More

- Feature extraction
 - Rapid disaster managment analysis
 - Wildfire emergency response
- Volumetric measurements
 - Geomorphic and Hydrologic change monitoring
- Color infrared
 - Algea bloom quantification

Top: UAS derived raster surface model and contour data shows substantial geomorphic change following a major flooding event.

Bottom: Color infrared UAS orthophoto mosaic of St. Albans Bay. 4cm resolution clearly reveals finescale aquatic vegetation - **University of Vermont, Spatial Analysis Lab**

So Many More

- Elevation models
- Point cloud generation
- 3D modeling
 - Crevass/Cave mapping
 - Flood inundation modeling
 - Boundary layer atmospheric conditions capture

University of Vermont, Spatial Analysis Lab

Drones in Earth Science: Steady Style

Pros:

- Big systems
 - Long flight times and distances
 - Large sophisticated sensors
 - Wide range of operating conditions
- Robust Systems
- Moderate re-use

• Cons:

- Long development cycles
- Equivalent very high costs
- Limited flexibility

NASA GlobalHawk:

- 8,500-nautical-mile range
- 24-hour endurance
- >7000kg payload capacity
- ~\$130M

Drones in Earth Science: Steady Style

- Falcon
 - ~3-5kg
 - ~\$3000/hr
 - <100km
 - ~1.2kg payload
 - Pixhawk flight controller

'Pro-Maker Style' Drones for science

- "...a standard tool in an Earth Scientists toolbox." USGS webinar, 2015*(Think multimeter)
- Off the shelf flight systems
- Low cost
- Rapidly evolving
- Highly adaptive
- Community based, grown, maintained
- Professional sensors
- Interoperable data
- Cloud/Container based analytics tools
- High degree of automated quality control *(Think ERC checker)

Solved problems

- Solved (and improving) problems – for these purposes at least
 - Open Autopilots
 - Open communication standards
 - Open mission planning
 - Open simulation framework to build customized flight control applications.
 - Developer APIs

Unsolved problems - the 'Pro' bit

Data...

- Provenance
 - Metadata standards
 - Sensors, Aircraft
 - Geo-referenced data
 - DOIs
- Interoperability formats...
 - Satellite, Ocean Gliders, sensor Webs, Computational modes
- Accessibility
 - DOIs
 - Searchable
 - Discoverable

Unsolved problems - the 'Maker' bit

Science Standardised Embedded Data infrastructure for Drones

- Snappy
 - Multi-platform
 - Raspberry Pi, Beaglebone, Dragon board,... - list growing fast?
 - Easy to install applications
 - GHG snap?
 - SFM snap?
 - DEM snap?
 - Full OS with std tools built in
 - Security built in

ROS

- Pub/Sub
- Std Interfaces supported
- Multi-sensor/actuator support
- Very Mature
- Feedback loop designed
- ROS2 swarm potential
- Standardising for drones in progress – Tully Foote, ELC 2016

• X-DOMES: Queriable SensorML respository

MongoDB

- Document store provides tolerance for dynamic data models, it being a
- Direct search and retrieval
- Guarantees of consistency and persistence,
- NoSQL a better fit for complex multi-sensor geospatial data
- Great geojson support
- ARM support in progress...
- Schemas?

Test Results

Unsolved problems - the other bits

- Drones4Earth
 - Data sharing portal
 - Data Standards
 - Sensor registry
 - DB schemas
 - Data store formats
 - Metadata requirement standards
 - Data fusions tools
 - Satelite and UAS imagery
 - Low res and UAS high res LIDAR
 - Modelling initialisation and validation
 - Multi-sensor composit visualisation

Conclusions & Future plans

- Drones4Earth
 - Data Standards
 - Data sharing portal
 - Data processing tools
 - Data fusions tools
- SSEDD
 - Application snaps
 - Mission planner-CHORDS integration
- Community...

