
Advanced systemd
for the embedded use-case

Jérémy Rosen



2/16

Introduction

This is just a feature list.

Based on the industrial/embedde use-case

From the point of view of someone that knows and teaches systemd

. . . but watches as other use it.

This talk will sound a lot like advertisement.

Test were done on a minimal buildroot

qemu_x86-64, glibc, udev/eudev

No usefull software

9.4 Mo vs 17.4 Mo

Boot time couldn’t be measured



3/16

Plan

1 Headline features

2 Hidden gems

3 Features I usually disable



4/16

Mastering the daemon’s environment

Systemdmakes it easy to control/restrict your daemon’s execution environment

Environment variables

Standard �le descriptors

User, groups, User namespaces

Chroot, bind mounts, �lesystem
masking, etc.

Scheduler con�guration, control
groups

Device/Network access

Capabilities, Syscall �ltering

SELinux/Smack aware

Security analysis tool.

Daemons don’t need to set their own environment.
This can be done by the integrator. . .

And checked system-wide.



5/16

A note on systemd and security

Systemd secures the system, not the applications

Minimize application privileges

Ensure applications do not perform forbidden action

Control communication channels between applications.

Systemd does not perform any security check itself

Systemd con�gures the kernel security mechanisms.

All mechanisms are con�gurable using the command line. . .
But good luck with that.

Systemd automates frequent cases, which decreases the risk of
errors



6/16

Mastering the daemon’s lifecycle

systemdmakes sure your daemon starts, runs and shuts down correctly

Robust startup logic with timeouts, readiness detection, pre-start scripts, post-start
scripts

Software watchdog with a single API call.

Robust cleanup, including IPC, post-exit scripts, dependency aware

Con�gurable restarts, including grace-period and burst protection

Well de�ned dependency/ordering rules
Just remember it’s a partial order, not a strict order

Writing a bullet-proof startup script is hard.
With systemd, you don’t even need to fork anymore.



7/16

Boot-related features

Standardized boot-blessing
Easy to add your own tests in a OTA/Distro neutral way
Easily to integrate into custom OTA update systems

Multiple boot targets
Production/Developement/Factory-test modes
Able to switch mode on a live system

Boot-time analysis tool
No guessing anymore. . .

Generators
Hardware-based boot targets (GPIO)
Easily convert XML con�g �les into system con�guration



8/16

Why does systemd boot faster

systemd boots more e�ciently for various reasons

Paralelization Many services are booted in parallel, saturating both CPU and disks

Socket-based dependencies Data-providers can be started before data-consumers

Less services On demand startup means some daemons are not started at all

Less processes Systemd sets the environment itself.
No shells, no subshells, much less commands.

72 vs 155 for the pid of the �rst shell.



9/16

Plan

1 Headline features

2 Hidden gems

3 Features I usually disable



10/16

Journald
The one everybody loves to hate

Exhaustive data collection
including stdouts, kernel and containers

Exhaustive metadata collection
Including reliable timestamps, boot ID and process information

Exhaustive API
Poll aware, with custom �lters.
Binary data in the journal

Network protocol
HTTPS Based, push and pull protocols
Integrated web-server for visualisation

File rotation/suppression
Handle all the cases you can throw at it.

Logs are a hard problem, especially for isolated systems.
Journald is a solid brick on which to build.



11/16

Dbus piloting

Everything systemctl 1 can do, you can do via dbus
Any info systemctl can get, you can get via dbus (including dbus signals)

system monitoring applications : just monitor the unit state

on demand restart of services : just trigger a unit-state change

dynamically change unit properties, including cgroup settings

Embedded applications need to interact with the system.
All embedded applications need to use Dbus anyway.

systemd’s Dbus API is exhaustive and well documented

1. And other systemd command-line tools



12/16

Filesystem/partition management

systemd can guess what partion goes where (GPT based)

systemd can create missing partition (systemd-parted)

systemd can format blank partitions

systemd can populate empty directories

fstab is complicated to handle.

systemd makes it easy for a system to “�ll up the empty space” on
�rst boot



13/16

Portable services

Portable services are applications packaged in an image

Easily buildable with buildroot/Yocto

Single �le to install/upgrade/remove

Contain their own dependencies and con�guration

Integrated in the host system (dbus, journal, dependencies)

A poor man’s packaging system that �ts perfectly the embedded
philosophy



14/16

Plan

1 Headline features

2 Hidden gems

3 Features I usually disable



15/16

Features for non-embedde use-cases

networkd Engineered for the datacenter use-case.

logind, homed, per-user systemd Only usefull for human users

nspawn very little need for containers in the embedded world

systemd-boot Only usefull on EFI systems

systemd in initrd our initrd are usually too trivial



16/16

Conclusion

Why I use systemd as much as possible on embedded systems

Writing a daemon is easy

Mastering the environment is easy

Securing a daemon is easy

Interacting with the system is easy

Understanding system interactions is easy

Debugging the system is easy

For embedded systems, learning systemd is de�nitely worth your
time.


	Headline features
	Hidden gems
	Features I usually disable

