
Native IP Stack For Zephyr™ OS

Zephyr is a trademark of the Linux Foundation. *Other names and brands may be claimed as the property of others.



Why a native IP stack?

• Features missing in current Contiki based uIP stack
•No dual IPv6 & IPv4 stack
•Only one bearer (BLE / 802.15.4) usable at a time
•One adapter only (like no 2 x 802.15.4 device)
•Memory management issues (too big buffers for small 
amount of networking data)
•Difficult to adapt uIP to multithreaded Zephyr OS

•Automatic testing of the network stack



Why not port 3rd party IP stack?

• Use native stack instead of embedding existing stack like lwip or 
FNET

> avoid adaptation layers which cause overhead
> use same network buffers everywhere to utilize memory 
efficiently
> unified look and feel of the APIs and code (helps maintenance)
> creating testing harness easier with new stack



How to do it?

• Re-write IPv6 and IPv4 components to enable dual stack
•Avoid any adaptation layers by utilizing Zephyr OS services directly
• Utilize memory better by enabling IP stack to use smaller buffers 

that can be linked together
• Creating a testing framework to test the stack automatically



Key Features
• Native dual IPv6 and IPv4 stack
• Built around network buffer pools 

concept, efficient memory 
management

• Possibility to have Zero/minimal 
copy data path from user space to 
device driver

• Supports Thread IP requirements 
• Native KConfig integration
• Uses automated testing harness 

for running network stack tests

RX fiberRX fiber

Network 
interface
Network 
interface

Task BTask B

Task ATask A

TX fiber, 
one per 
interface

TX fiber, 
one per 
interface

TX FIFORX FIFO

Network 
interface
Network 
interface

Multiple TX fibers
● Each network device has 

its own TX fiber
● Write to device drivers 

TX FIFO

One RX fiber
● Global RX FIFO for receiving
● array of network contexts 

(“sockets”)
● Look up Tasks’ Rx FIFOs



Key L2 features
• Dedicated OSI L2 abstraction
• Supports multiple bearers and 

interfaces such as IEEE 
802.15.4 and Bluetooth*

• Concurrent TX/RX on all 
interfaces

• Spec-compliant 802.15.4 
implementation

• Supports current Zephyr OS 
network drivers with small 
modification

Core IP Stack
(Core, IPv6/4, ICMP/v6,UDP/TCP, ...)

Core IP Stack
(Core, IPv6/4, ICMP/v6,UDP/TCP, ...)

EthernetEthernet

Management 
API

Management 
API

ApplicationApplication

Ethernet 
driver

Ethernet 
driver

Network Interface 
(As many instances as hardware 

devices, hiding the inner complexity 
under a generic structure and API)

Network Interface 
(As many instances as hardware 

devices, hiding the inner complexity 
under a generic structure and API)

Generic L2 APIGeneric L2 API

IEEE 802.15.4IEEE 802.15.4 BluetoothBluetooth

SLIP TAP 
driver

SLIP TAP 
driver

CC2520 
driver

CC2520 
driver

CC1200 
driver

CC1200 
driver

HCI/NRF
51

HCI/NRF
51

6LoWPAN6LoWPAN

*Other names and brands may be claimed as the property of others.



Automatic Testing

• Component tests created that will test some specific part of the 
networking stack (example: 6lo, neighbor mgmt, ip-addr mgmt 
etc.)

•These tests are executed automatically for each commit
•Full network stack conformance testing run periodically



Network buffer overview

• net_buf’s can be chained together 
to allow sending or receiving bigger 
amount of data

• Amount of fragments is configurable 
by Kconfig option

• Size of the network data part of the 
fragment can be configured via 
Kconfig

• User specific data part in the first 
fragment can contain protocol 
specific information

• Example: typical size of the network 
data part is 128 bytes for 802.15.4



Network buffer details

• Link layer header pre-allocated 
in the net_buf

• Requires application data 
partitioning when sending the 
data

• When receiving, the application 
needs to read the data in 
chunks as the data is not 
continuous

• The L2 layer will insert link layer 
data to the start of the net_buf



Release Plan

• Currently native IP stack code under development can be found at 
“net” branch in Zephyr OS git [1]

• Merge native IP stack to Zephyr OS 1.7 release

[1] https://gerrit.zephyrproject.org/r/gitweb?p=zephyr.git;a=tree;h=refs/heads/net;hb=refs/heads/net



Thank you!


	Native IP Stack For Zephyr™ OS
	Why a native IP stack?
	Why not port 3rd party IP stack?
	How to do it?
	Slide 5
	Slide 6
	Automatic Testing
	Network buffer overview
	Network buffer details
	Release Plan
	Thank you!

