CELF ELC Europe 2009

THE THE AND THE

GOOD BAD UGLY

@odefidence

On Threads,
Processes and
Co-Processes

Gilad Ben-Yossef
Codefidence Ltd.

(C) 2008.2009 Codefidence

About Me

Chief Coffee Drinker of Codefidence Ltd.

Co-Author of Building Embedded Linux System, 2™
edition

Israeli FOSS NPO Hamakor co-founder
August Penguin co-founder
git blame -- FOSS.”

Linux

Asterisk

cfgsh (RIP) ...
©@odefidence

(C) 2008.2009 Codefidence

Linux Process and Threads

Stack

State

Signal
Mask

Priority

Stack

State

Stack

Signal
Mask

State

Stack

Priority

Signal
Mask

State

Priority

Signal
Mask

Priority

Stack

State

Signal
Mask

Priority

Thread 1

Process 123 Process 124

File Signal File

Memor Signal
Descriptors Y | Handlers Descriptors

Memory Handlers

@ odefidence

4 name you can tru 5

() 2008.2009 Codefidence

The Question

Should we use threads?

Given an application that calls for several tasks, should we
Implement each task as a thread in the same processes or in a
separate processes?

@odefidence

(C) 2008.2009 Codefidence

What Do The Old Wise Men Say?

"If you think you need threads then your
processes are too fat."

Rob Pike, co-author of The Practice of Programming and
The Unix Programming Environment.

“A Computer is a state machine. Threads are
for people who can't program state
machines.”

Alan Cox, Linux kernel programmer

@odefidence

(C) 2008.2009 Codefidence

Spot the Difference (1)

The Linux scheduler always operates at a
thread granularity level.

You can start a new process without loading a
new program, just like with a thread

fork() vs. exec()

Process can communicate with each other just
like threads

Shared memory, mutexes, semaphores, message
gueues etc. work between processes too.

@odefidence

(C) 2008.2009 Codefidence

Spot the Difference (2)

Process creation time is roughly double that of
a thread.
... but Linux process creation time is still very small.

... but most embedded systems pre-create all tasks
In advance anyway.

Each process has it's own virtual memory
address space.

Threads (of the same process) share the virtual
address space.

@odefidence

(C) 2008.2009 Codefidence

Physical and Virtual Memory

Physical address space

OXFFFFFFFFF
I/O memory 3

I/O memory 2

I/O memory 1

Flash

RAM 1

RAM 0

0x00000000

@odefidence

name you can trust™

MMU

Memory
Management
Unit

Virtual address spaces

OXFFFFFFFFF

Process 0

0x00000000

CPU

All the processes have
their own virtual
address space, and run
as if they had access to
the whole address
space.

This slide is © 2004 — 2009 Free Electrons.

OXFFFFFFFFF

Process1

0x00000000

OXFFFFFFFFF

Process?2

0x00000000

(C) 2008.2009 Codefidence

Page Tables

Virtual Page Page Frame
Address Address Address S~
Space | Read
Number * ASN Write

Virtual Physica Permission Execute
7 Cached
12 0x8000 0x5340 RWXC
}7 ,,,,,,,,,,, .
15 0x8000 0x3390 RX
Read Only
Execute
Non Cached

CPU ™ MMU »MGBTJ:"Y

* Does not exists on all architectures.

(@ odefidence

4 name you can trust™

(C) 2008.2009 Codefidence

Translation Look-aside Buffers

he MMU caches the content of page tables in
a CPU local cache called the TLB.

TLBs can be managed in hardware

automatically (x86, Sparc) or by software (Mips,
PowerPC)

Making changes to the page tables might
require a TLB cache flush, if the architecture
does not support TLB ASN (Alpha, Intel
Nehalem, AMD SVM)

@odefidence

(C) 2008.2009 Codefidence

Cache Indexes

Data and Instruction caches may use either
virtual or physical address as the key to the

cache.

Physically indexed caches don't care about
different address spaces.

Virtually indexed caches cannot keep more
then one alias to the same physical address

Or need to carefully manage aliasing using tagging.

@odefidence

(C) 2008.2009 Codefidence

LMBench

LMBench is a suite of simple, portable
benchmarks by Larry McVoy and Carl Staelin

lat_ctx measures context switching time.

Original lat_ctx supported only measurement of
Inter process context switches.

| have extended it to measure also inter thread
content switches.

All bugs are mine, not Larry and Carl :-)

@odefidence

(C) 2008.2009 Codefidence

How lat_ctx works (1)

2. Pass

8923478234972364972349723469234692346923462397 tO I_(e n _O na
462937y923236497234693246928923478234972364972 LJr]I)(F)IF)EB t()
349723469234692346923462397462937y923236497234

6932469289234782349723649723497234692346923469 /\ n eXt ta S k
23462397462937y9232364972346932469289234 782349
72364972349723469234692346923462397462937y9232
3649723469324692892347823497236497234972346923
4692346923462397462937y92323649723469324692892
3478234972364972349723469234692346923462397462
937y923236497234693246928923478234972364972349
723469234692346923462397462937y923236497234693
2469289234782349723649723497234692346923469234
62397462937y9232364972346932469289234782349723
64972349723469234692346923462397462937y9232364
9723469324692892347823497236497234972346923469
2346923462397462937y92323649723469324692892347
8234972364972349723469234692346923462397462937
y923236497234693246923246928923478234972364972 TaS k 3
349723469234692346923462397462937y923236497234
6932469289234782349723649723497234692346923469 - —
23462397462937y92325>34972346932469289234 782349
723649723497234692346 6923462397462937y9232
36497234693246928923478 236497234972346923
4692346923462397462937y92 723469324692892
347823497236497234972346923 923462397462
937y9232364972346932469289234 36497234

Can set task size 1. Perform

and number of tasks calculation on a
variable size array

@odefidence

name you can trust™

(C) 2008.2009 Codefidence

How lat_ctx works (2)

Both the data and the instruction cache get
polluted by some amount before the token is
passed on.

The data cache gets polluted by approximately the
process size".

The instruction cache gets polluted by a constant
amount, approximately 2.7 thousand instructions.

The benchmark measures only the context switch
time, not including the overhead of doing the work.

A warm up run with hot caches is used as a reference.

@odefidence

(C) 2008.2009 Codefidence

lat_ctx Accuracy

The numbers produced by this benchmark are
somewhat inaccurate;

They vary by about 10 to 15% from run to run.

The possible reasons for the inaccuracies are
detailed in LMBench documentation

They aren't really sure either.

@odefidence

(C) 2008.2009 Codefidence

Context Switch Costs

Using the modified lat_ctx we can measure the
difference between the context switch times of

threads and processes.

Two systems used:
Intel x86 Core2 Duo 2Ghz

Dual Core
Hardware TLB
Freescale PowerPC MPC8568 MDS

Single core
Software TLB

(@ odefidence
a name you can trust™
(C) 2008.2009 Codefidence

X86 Core2 Duo 2Ghz Ok data

1.85 e

1.81

—\
oo

1.76
1.75
B Threads

B Proccesses

—
N

1.65

Context Switch Time in Usec

1.6
3} 10 20

Number of Threads/Processes

@odefidence

() 2008.2009 Codefidence

X86 Core2 Duo 2Ghz 16k data

2.24
2.23
2.23
2.22
2.22
2.21
2.21

2.2

2.2
2.19
2.19

2.23

2.22 2.22

B Threads
B Proccesses

Context Switch Time in Usec

S} 10 20

Number of Threads/Processes

@odefidence

() 2008.2009 Codefidence

X86 Core2 Duo 2Ghz 128k data

18
16
14
12
10

16.61

B Threads
B Proccesses

~ O

Context Switch Time in Usec
(@)

3.73 3.28
1.99 1.92

S} 10 20

Number of Threads/Processes

N

o

@odefidence

() 2008.2009 Codefidence

PPC MPC8568 MDS 0Ok data

4
9 3.9 3.24 3.26 544
) 3.05
2 3
= 2.61
"§’ 25 2.36
= 2 B Threads
: m
u;) 15 Proccesses
5 1
S 05

0

5 10 20

Number of Threads/Processes

EEEEEEEEEEEEEEEE

() 2008.2009 Codefidence

PPC MPC8568 MDS 16k data

20
18 17.77 17.87

g 14.25
14 13.18 137 13.35 g
12
10 B Threads
8 B Proccesses
5 10 20

Number of Threads/Processes

Context Switch Time in Usec

ON b~ O

EEEEEEEEEEEEEEEE

() 2008.2009 Codefidence

PPC MPC8568 MDS 128k data

250
090 4227.63 227.6828.23
200
178.06

167.8
150
100
0
5 10 20

Number of Threads/Processes

B Threads
B Proccesses

Ol
o

Context Switch Time in Usec

EEEEEEEEEEEEEEEE

() 2008.2009 Codefidence

Conclusions

Context switch times change between threads
and processes.

It is not a priori obvious that threads are better.

ne difference is quite small.

ne results vary between architectures and
platforms.

Why do we really use threads?

@odefidence

(C) 2008.2009 Codefidence

Why People Use Threads?

It's the API, Silly.

POSIX thread API offers simple mental model.

@odefidence

(C) 2008.2009 Codefidence

fork()

Zero parameters.

Set everything yourself
after process creation.

New process begins
with a virtual copy of
parent at same location

Copy on write semantics
require shared memory
setup

@odefidence

APl Complexity: Task Creation

pthread_create()

Can specify most
attributes for new
thread during create

Can specify function
for new thread to
start with

Easy to grasp
address space
sharing

(C) 2008.2009 Codefidence

APl Complexity: Shared Memory

Threads share all the memory.

You can easily setup a segment of shared
memory for processes using shm_create()

Share only what you need!

BUT... each process may map shared segment
at different virtual address.

Pointers to shared memory cannot be shared!
A simple linked list becomes complex.

@odefidence

(C) 2008.2009 Codefidence

APl Complexity: File Handles

In Unix, Everything is a File.
Threads share file descriptors.

Processes do not.

Although Unix Domain Socket can be used to pass
file descriptors between processes.

System V semaphores undo values not shared as
well, unlike threads.

Can make life more complicated.

@odefidence

(C) 2008.2009 Codefidence

Processes APl Advantages

Processes Threads
PID visible in the No way to name task
system. In a unigue name.
Can set process Kernel thread id not
name via related to internal
program_invocation_n thread handle.
ame. Difficult to ID a thread
Easy to identify a In the system.
processes in the
system.

@odefidence

(C) 2008.2009 Codefidence

The CoProc Library

CoProc is a proof of concept library that
provides an APl implementing share-as-you-
need semantics for tasks

Wrapper around Linux clone() and friends.

Co Processes offer a golden path between
traditional threads and processes.

Check out the code at:
http://github.com/gby/coproc

@odefidence

(C) 2008.2009 Codefidence

http://github.com/gby/coproc

CoProc Highlights

A managed shared memory segment,

guaranteed to be mapped at the same virtual
address

Coproc PID and name visible to system

Decide to share file descriptors or not at coproc
creation time.

Set attributes at coproc creation time.

Detached/joinable, address space size, core size,
max CPU time, stack size, scheduling policy,
priority, and CPU affinity supported.

@odefidence

(C) 2008.2009 Codefidence

CoProc APl Overview

int coproc init(size t shm max size);

pid t coproc create(char * coproc name, struct
coproc_attributes * attrib, int flags, int (*
start routine)(void *), void * arg);

int coproc_exit(void);
void * coproc_alloc(size t size);
void coproc free(void * ptr);

int coproc_join(pid t pid, int * status);

d name you can trust™
(C) 2008.2009 Codefidence

CoProc Attributes

struct coproc_attributes {

rlim t address space size; /* The maximum size of the process
address space in bytes */

rlim t core file size; /* Maximum size of core file */

rlim t cpu time; /* CPU time limit in seconds */

rlim t stack size; /* The maximum size of the process
stack, in bytes */

int scheduling policy; /* Scheduling policy. */

int scheduling param; /* Scheduling priority or

nice level */

cpu set t cpu affinity mask; /* The CPU mask of the co-proc */
}i

(C) 2008.2009 Codefidence

CoProc Simple Usage Example

int pid, ret;

char * test mem;

struct coproc_attributes = { ... };
coproc_init (1024 * 1024);

test mem = coproc alloc(1024);

if(!test mem) abort();

pid = coproc_create("test coproc", &test coproc_attr, \
COPROC_SHARE FS ,test coproc func, test mem);

if(pid < 0) abort();
coproc_join(pid, &ret);
coproc_free(test mem);

@ odefidence

4 name you can trust™

(C) 2008.2009 Codefidence

The author wishes to acknowledge the
contribution of the following people:

Larry McVoy and Carl Staelin for LMBench.

Joel Issacason, for an eye opening paper about a
different approach to the same issue

Rusty Russel, for libantithreads, yet another
approach to the same issue.

Free Electrons, for Virt/Phy slide.

Sergio Leone, Clint Eastwood, Lee Van Cleef, and
Eli Wallach for the movie :-)

@odefidence

(C) 2008.2009 Codefidence

Thank You For Listening!

Questions?

Codefidece Ltd.: http://codefidence.com
Community site: http://tuxology.net
Email: gilad@codefidence.com

Phone: +972-52-8260388

Twitter: @giladby

SIP: gilad@pbx.codefidence.com

Skype: gilad_codefidence
@godefidence

(C) 2008.2009 Codefidence

http://codefidence.com/
http://tuxology.net/
mailto:gilad@codefidence.com

	On Threads, Processes and Co-Processes
	About Me
	Linux Process and Threads
	The Question
	Should We Use Threads?
	Spot the Difference (1)
	Spot the Difference (2)
	Physical and virtual memory
	Page Tables
	Translation Look-aside Buffers
	Cache Indexes
	LMBench
	How lat_ctx works (1)
	How lat_ctx works (2)
	lat_ctx Accuracy
	Context Switch Costs
	X86 Core2 Duo 2Ghz 0k data
	X86 Core2 Duo 2Ghz 16k data
	X86 Core2 Duo 2Ghz 128k data
	PPC MPC8568 MDS 0k data
	PPC MPC8568 MDS 16k data
	PPC MPC8568 MDS 128k data
	Conclusion
	Slide 24
	API Complexity: Task Creation
	API Complexity: Shared Memory
	API Complexity: File Handles
	API Complexity: Naming Tasks
	The CoProc Library
	CoProc Highlights
	CoProc API Overview
	CoProc Attributes
	CoProc Simple Usage Example
	Credits
	Questions?

