
Practical Experiences With Software Crash Analysis in TV

Wim Decroix/Yves Martens, TPVision

12 November 2012
Wim Decroix/Yves Martens

Overview

• Context

• One-slide overview of tooling approach

• Practical usecases

12 November 2012

Wim Decroix/Yves Martens
2

3

Context: SPACE SW Architecture

SPlit Application arChitecturE
• Applications are isolated in dedicated processes

• The resources in the system are explicitly and centrally managed

• The client applications are system context unaware

• The lifecycle, focus and visual layout of the client applications is

centrally managed

Linux

amApp

plfApp

amApi

AnyApp AnyApp AnyApp

DirectFB DirectFB DirectFB

DirectFB

Wim Decroix/Yves Martens

12 November 2012

Problem: Increasing # SW crashes

12 November 2012

Wim Decroix/Yves Martens
4

0

20

40

60

80

100

120

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2007 2008 2009 2010 2011 2012

S
W

 S
z
ie

 (
M

B
)

#
S

W
 C

ra
s
h

 P
R

#SW Crash PR

SW Size

Problem: Increasing # SW crashes

• Increasing number of SW crashes found during QA testing

• Lot of effort spent to analyse and solve these

• Leads to longer time to mature SW

• Leads to longer time to market

12 November 2012

Wim Decroix/Yves Martens
5

Crash Analysis and Resolution Flow

12 November 2012

Wim Decroix/Yves Martens
6

Crash seen -> Problem

Report

Developer 1 analyses

which app/…

Developer 2 analyses

root cause

Developer 2 solves

crash

Desired

Flow

Normal

Flow

How to reach desired flow

• Detect crashes in SW

• Dump as much of information on crash as possible

• Good analysis and visualization tools of dumps

– To dispatch to correct developer

– To indicate root cause

• Continuously improve tooling

– Analyse problems in the long flow

– Investigate what can be changed to reach the desired flow

12 November 2012

Wim Decroix/Yves Martens
7

Roles

• QA testing
– Black box functional tests, duration tests (overnight, weekend)

– File problem reports with attached post mortem dumps.

• Developers
– Write functional code, follow SPACE architecture

• following execution architecture rules

– Debug using post mortem info / debug tooling

• “Execution Architecture” team
– Create tooling for post mortem info & debug

– Blessed with solving the „hard‟ crashes

– Set execution architecture rules

– Special thanks for their contribution to this presentation!

• Nico De Ceulaer, Pieter Van Loocke, …

 12 November 2012

Wim Decroix/Yves Martens
8

One slide overview

• Fault Detection
– Signal detection

– Watchdogs

– Kernel crashes

• Fault Information Reporting
– UART, various circular buffers capturing events, stack backtracing, standard

Linux info, memory usage monitoring

• Fault Storage
– NAND Flash post mortem dumps, UART logs, EPROM NVM

• Fault Recovery
– Various degrees of reboot

• Fault Retrieval
– Via USB, service, ethernet…

• Fault Analysis
– Website for dump translation, PR (cross-)analysis

– TimeDoctor Visualisation

12 November 2012

Wim Decroix/Yves Martens
9

Examples of software crashes

1. Signals

2. Watchdog (worker thread not responding)

3. Watchdog (blocked through other thread)

4. Watchdog (CPU overload)

5. Watchdog (deadlock)

6. Linux Out of Memory

12 November 2012

Wim Decroix/Yves Martens
10

Example 1: SIGSEGV/… backtrace

• Crash:

– Null pointer dereference/…

• Detect:

– Install signal handler in all applications

• Dump:

– Stacktrace of thread causing signal

– Dump on internal flash

– Testers copy dump from flash and attach to problem report

• Analysis

– Automatic translation of backtrace in problem report

12 November 2012

Wim Decroix/Yves Martens
11

Example 1: SIGSEGV/… backtrace

• Standard solution: using glibc backtrace in signal handler

• Proprietary kernel based backtrace used

• Mainly due to historical reasons

• Other advantages:

– Combines userspace and kernel space stack

– Backtrace also available when in uninterruptable sleep or

when signals are blocked

12 November 2012

Wim Decroix/Yves Martens
12

Example 1: SIGSEGV/… backtrace

12 November 2012

Wim Decroix/Yves Martens
13

Example 1: SIGSEGV/… backtrace

12 November 2012

Wim Decroix/Yves Martens
14

Backtrace:

Patch:

190a191,192

> if(pckt_ptr != NULL)

> {

197a200,201

> if(next_ptr != NULL)

> {

198a203

> }

208a214

> }

Example 2: Watchdog (worker thread not

responding)

• TV software works with worker threads (called pump

engines) executing tasks (called pumps).

• All tasks must be finished within certain amount of time.

• Otherwise this is assumed to be an error and the TV is

restarted.

• Reason: Avoid that the user manually has to unplug and

replug the TV to recover from endless running task.

12 November 2012

Wim Decroix/Yves Martens
15

Example 2: Watchdog (worker thread not

responding)

• Crash:

– Watchdog due to task in endless loop/…

• Detect:

– Every worker thread feeds watchdog

• Dump:

– Dump backtrace of worker thread that caused watchdog

(standard solution: raise signal to thread causing watchdog)

• Analysis:

– Translate backtrace

12 November 2012

Wim Decroix/Yves Martens
16

Example 2: Watchdog (worker thread not

responding)

12 November 2012

Wim Decroix/Yves Martens
17

Example 3: Watchdog (blocked on other

thread)

12 November 2012

Wim Decroix/Yves Martens
18

• Crash:

– Watchdog due to task waiting on another task

• Detect:

– Every worker thread feeds watchdog

• Dump:

– Dump backtrace of all threads
(standard solution: raise signal to all threads)

– Dump trace of last events in system

• Analysis:

– Translate backtrace

– Visualize last x seconds

Example 3: Watchdog (blocked on other

thread)

• Propietary tracing format which logs

– In kernel (using tracepoint):

• Task switches in kernel

• Interrupt handling

• Syscalls

• Signals

– In userspace:

• Pump execution

• RPC calls between applications

• Modified timedoctor is used for visualization

– http://sourceforge.net/projects/timedoctor/

 12 November 2012

Wim Decroix/Yves Martens
19

http://sourceforge.net/projects/timedoctor/

Example 3: Watchdog (blocked on other

thread)

• TODO: add timedoctor

12 November 2012

Wim Decroix/Yves Martens
20

Example 3: Watchdog (blocked on other

thread)

• TODO: add timedoctor

12 November 2012

Wim Decroix/Yves Martens
21

Example 3: Watchdog (blocked on other

thread)

12 November 2012

Wim Decroix/Yves Martens
22

Example 3: Watchdog (blocked on other

thread)

12 November 2012

Wim Decroix/Yves Martens
23

Example 3: Watchdog (blocked on other

thread)

12 November 2012

Wim Decroix/Yves Martens
24

Example 3: Watchdog (blocked on other

thread)

12 November 2012

Wim Decroix/Yves Martens
25

Example 4: Watchdog (CPU overload)

12 November 2012

Wim Decroix/Yves Martens
26

• Crash:

– Watchdog due to task taking longer due to CPU consumed
by other threads

• Detect:

– Every worker thread feeds watchdog

• Dump:

– Dump backtrace of all threads
(standard solution: raise signal to all threads)

– Dump trace of last events in system

• Analysis:

– Translate backtrace

– Visualize last x seconds

Example 4: Watchdog (CPU overload)

12 November 2012

Wim Decroix/Yves Martens
27

Example 5: Watchdog (deadlock)

• Crash:

– Watchdog due to task blocked on lock

• Detect:

– Every worker thread feeds watchdog

• Dump:

– Dump lock status as much as possbile

• Analysis:

– Show status of locks in backtraces

12 November 2012

Wim Decroix/Yves Martens
28

Example 5: Watchdog (deadlock)

12 November 2012

Wim Decroix/Yves Martens
29

Example 5: Watchdog (deadlock)

12 November 2012

Wim Decroix/Yves Martens
30

Example 6: Out Of Memory

• Problem:

– Standard Linux OOM killer would remove forensic evidence

from debug dumps. We must collect all info before it kicks in

• Detect:

– Poll free memory (minus buffers and cached)

• Heuristic value of required free memory defined

• Dump:

– Dump memory status of all applications and libraries

• Proprietary tool parsing kpagemap

12 November 2012

Wim Decroix/Yves Martens
31

Example 6: Out Of Memory

12 November 2012

Wim Decroix/Yves Martens
32

owner unknown code data heap bss stack shared file other TOTAL

+recordApp 0.0 20.0 8.0 1068.0 0.0 200.0 0.0 0.0 60.0 1356.0

+ytlbApp 0.0 0.0 12.0 280.0 0.0 160.0 0.0 0.0 0.0 452.0

+epgApp 0.0 72.0 24.0 2684.0 0.0 257.0 0.0 0.0 3988.0 7025.0

+txtApp 0.0 16.0 12.0 1420.0 0.0 272.0 0.0 0.0 1552.0 3272.0

+oskbApp 0.0 8.0 8.0 1424.0 0.0 180.0 1.0 0.0 16.0 1637.0

+upgApp 0.0 12.0 12.0 1412.0 0.0 192.0 0.0 0.0 60.0 1688.0

+dfuApp 0.0 8.0 4.0 2832.0 0.0 172.0 0.0 0.0 4.0 3020.0

+nettvApp 0.0 196.0 28.0 241264.0 0.0 1329.0 16.0 0.0 820.0 243653.0

+ecdApp 0.0 12.0 8.0 208.0 0.0 180.0 0.0 0.0 80.0 488.0

+playApp 0.0 12.0 28.0 1936.0 0.0 252.0 1.0 0.0 1196.0 3425.0

...

-libdl-2.13.so 0.0 0.0 88.0 0.0 4.0 0.0 0.0 0.0 0.0 92.0

-librt-2.13.so 0.0 4.0 84.0 0.0 0.0 0.0 0.0 0.0 0.0 88.0

-libgcc_s.so.1 0.0 19.0 84.0 0.0 0.0 0.0 0.0 0.0 0.0 103.0

-libpthread-2.13.so 0.0 69.0 88.0 0.0 88.0 0.0 0.0 0.0 0.0 245.0

-libutil-2.13.so 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0

-libcrypt-2.13.so 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0

-libnsl-2.13.so 0.0 4.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0

-libnss_files-2.13.so 0.0 4.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0

-libnss_nis-2.13.so 0.0 4.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0

-libc-2.13.so 0.0 617.0 251.0 0.0 340.0 0.0 0.0 0.0 0.0 1208.0

-ld-2.13.so 0.0 99.0 227.0 0.0 8.0 0.0 0.0 0.0 0.0 334.0

Summary

• Reduce Time-To-Market by efficient software crash

analysis

• Add information to crash dumps

• Improve analysis

• Continuous improvement based on experience

12 November 2012

Wim Decroix/Yves Martens
33

Questions?

12 November 2012

Wim Decroix/Yves Martens
34

Appendix: Resources

• jointSPACE

– http://jointspace.sourceforge.net/

• TimeDoctor

– http://sourceforge.net/projects/timedoctor/

12 November 2012

Wim Decroix/Yves Martens
36

http://jointspace.sourceforge.net/
http://jointspace.sourceforge.net/
http://sourceforge.net/projects/timedoctor/
http://sourceforge.net/projects/timedoctor/

