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Overview 

• Context 

• One-slide overview of tooling approach 

• Practical usecases 
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Context: SPACE SW Architecture 

SPlit Application arChitecturE 
• Applications are isolated in dedicated processes 

• The resources in the system are explicitly and centrally managed 

• The client applications are system context unaware 

• The lifecycle, focus and visual layout of the client applications is 

centrally managed 
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Problem: Increasing # SW crashes 
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Problem: Increasing # SW crashes 

• Increasing number of SW crashes found during QA testing 

• Lot of effort spent to analyse and solve these 

• Leads to longer time to mature SW 

• Leads to longer time to market 
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Crash Analysis and Resolution Flow 
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How to reach desired flow 

• Detect crashes in SW 

• Dump as much of information on crash as possible 

• Good analysis and visualization tools of dumps 

– To dispatch to correct developer 

– To indicate root cause 

• Continuously improve tooling 

– Analyse problems in the long flow 

– Investigate what can be changed to reach the desired flow 
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Roles 

• QA testing 
– Black box functional tests, duration tests (overnight, weekend) 

– File problem reports with attached post mortem dumps. 

 

• Developers 
– Write functional code, follow SPACE architecture 

• following execution architecture rules 

– Debug using post mortem info / debug tooling 

 

• “Execution Architecture” team 
– Create tooling for post mortem info & debug 

– Blessed with solving the „hard‟ crashes 

– Set execution architecture rules 

– Special thanks for their contribution to this presentation! 

• Nico De Ceulaer, Pieter Van Loocke, … 
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One slide overview 

• Fault Detection 
– Signal detection 

– Watchdogs 

– Kernel crashes 

• Fault Information Reporting 
– UART, various circular buffers capturing events, stack backtracing, standard 

Linux info, memory usage monitoring 

• Fault Storage 
– NAND Flash post mortem dumps, UART logs, EPROM NVM 

• Fault Recovery 
– Various degrees of reboot 

• Fault Retrieval 
– Via USB, service, ethernet… 

• Fault Analysis 
– Website for dump translation, PR (cross-)analysis 

– TimeDoctor Visualisation 
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Examples of software crashes 

1. Signals 

2. Watchdog (worker thread not responding) 

3. Watchdog (blocked through other thread) 

4. Watchdog (CPU overload) 

5. Watchdog (deadlock) 

6. Linux Out of Memory 
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Example 1: SIGSEGV/… backtrace 

• Crash: 

– Null pointer dereference/… 

• Detect:  

– Install signal handler in all applications  

• Dump: 

– Stacktrace of thread causing signal 

– Dump on internal flash 

– Testers copy dump from flash and attach to problem report 

• Analysis 

– Automatic translation of backtrace in problem report 
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Example 1: SIGSEGV/… backtrace 

• Standard solution: using glibc backtrace in signal handler 

 

• Proprietary kernel based backtrace used 

• Mainly due to historical reasons 

• Other advantages: 

– Combines userspace and kernel space stack 

– Backtrace also available when in uninterruptable sleep or 

when signals are blocked 
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Example 1: SIGSEGV/… backtrace 
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Example 1: SIGSEGV/… backtrace 
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Backtrace: 

Patch: 

190a191,192 

>  if(pckt_ptr != NULL) 

>  { 

197a200,201 

>   if(next_ptr != NULL) 

>   { 

198a203 

>   } 

208a214 

>  } 



Example 2: Watchdog (worker thread not 

responding) 

• TV software works with worker threads (called pump 

engines) executing tasks (called pumps). 

• All tasks must be finished within certain amount of time. 

• Otherwise this is assumed to be an error and the TV is 

restarted. 

• Reason: Avoid that the user manually has to unplug and 

replug the TV to recover from endless running task. 
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Example 2: Watchdog (worker thread not 

responding) 

• Crash: 

– Watchdog due to task in endless loop/… 

• Detect: 

– Every worker thread feeds watchdog 

• Dump: 

– Dump backtrace of worker thread that caused watchdog 

(standard solution: raise signal to thread causing watchdog) 

• Analysis: 

– Translate backtrace 
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Example 2: Watchdog (worker thread not 

responding) 
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Example 3: Watchdog (blocked on other 

thread) 
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• Crash: 

– Watchdog due to task waiting on another task 

• Detect: 

– Every worker thread feeds watchdog 

• Dump: 

– Dump backtrace of all threads 
(standard solution: raise signal to all threads) 

– Dump trace of last events in system 

• Analysis: 

– Translate backtrace 

– Visualize last x seconds 

 

 



Example 3: Watchdog (blocked on other 

thread) 

• Propietary tracing format which logs 

– In kernel (using tracepoint): 

• Task switches in kernel 

• Interrupt handling 

• Syscalls 

• Signals 

– In userspace: 

• Pump execution 

• RPC calls between applications 

• Modified timedoctor is used for visualization 

– http://sourceforge.net/projects/timedoctor/ 
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Example 3: Watchdog (blocked on other 

thread) 

• TODO: add timedoctor 
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Example 3: Watchdog (blocked on other 

thread) 

• TODO: add timedoctor 
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Example 3: Watchdog (blocked on other 

thread) 
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Example 3: Watchdog (blocked on other 

thread) 
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Example 3: Watchdog (blocked on other 

thread) 
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Example 3: Watchdog (blocked on other 

thread) 
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Example 4: Watchdog (CPU overload) 
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• Crash: 

– Watchdog due to task taking longer due to CPU consumed 
by other threads 

• Detect: 

– Every worker thread feeds watchdog 

• Dump: 

– Dump backtrace of all threads 
(standard solution: raise signal to all threads) 

– Dump trace of last events in system 

• Analysis: 

– Translate backtrace 

– Visualize last x seconds 

 



Example 4: Watchdog (CPU overload) 
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Example 5: Watchdog (deadlock) 

• Crash: 

– Watchdog due to task blocked on lock 

• Detect: 

– Every worker thread feeds watchdog 

• Dump: 

– Dump lock status as much as possbile 

• Analysis: 

– Show status of locks in backtraces 
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Example 5: Watchdog (deadlock) 
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Example 5: Watchdog (deadlock) 
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Example 6: Out Of Memory 

• Problem: 

– Standard Linux OOM killer would remove forensic evidence 

from debug dumps. We must collect all info before it kicks in 

• Detect: 

– Poll free memory (minus buffers and cached) 

• Heuristic value of required free memory defined 

• Dump: 

– Dump memory status of all applications and libraries 

• Proprietary tool parsing kpagemap 
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Example 6: Out Of Memory 
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owner                unknown  code  data     heap   bss  stack shared file  other    TOTAL 

+recordApp               0.0  20.0   8.0   1068.0   0.0  200.0    0.0  0.0   60.0   1356.0 

+ytlbApp                 0.0   0.0  12.0    280.0   0.0  160.0    0.0  0.0    0.0    452.0 

+epgApp                  0.0  72.0  24.0   2684.0   0.0  257.0    0.0  0.0 3988.0   7025.0 

+txtApp                  0.0  16.0  12.0   1420.0   0.0  272.0    0.0  0.0 1552.0   3272.0 

+oskbApp                 0.0   8.0   8.0   1424.0   0.0  180.0    1.0  0.0   16.0   1637.0 

+upgApp                  0.0  12.0  12.0   1412.0   0.0  192.0    0.0  0.0   60.0   1688.0 

+dfuApp                  0.0   8.0   4.0   2832.0   0.0  172.0    0.0  0.0    4.0   3020.0 

+nettvApp                0.0 196.0  28.0 241264.0   0.0 1329.0   16.0  0.0  820.0 243653.0 

+ecdApp                  0.0  12.0   8.0    208.0   0.0  180.0    0.0  0.0   80.0    488.0 

+playApp                 0.0  12.0  28.0   1936.0   0.0  252.0    1.0  0.0 1196.0   3425.0 

... 

-libdl-2.13.so           0.0   0.0  88.0      0.0   4.0    0.0    0.0  0.0    0.0     92.0 

-librt-2.13.so           0.0   4.0  84.0      0.0   0.0    0.0    0.0  0.0    0.0     88.0 

-libgcc_s.so.1           0.0  19.0  84.0      0.0   0.0    0.0    0.0  0.0    0.0    103.0 

-libpthread-2.13.so      0.0  69.0  88.0      0.0  88.0    0.0    0.0  0.0    0.0    245.0 

-libutil-2.13.so         0.0   0.0   4.0      0.0   0.0    0.0    0.0  0.0    0.0      4.0 

-libcrypt-2.13.so        0.0   0.0   4.0      0.0   0.0    0.0    0.0  0.0    0.0      4.0 

-libnsl-2.13.so          0.0   4.0   8.0      0.0   0.0    0.0    0.0  0.0    0.0     12.0 

-libnss_files-2.13.so    0.0   4.0   8.0      0.0   0.0    0.0    0.0  0.0    0.0     12.0 

-libnss_nis-2.13.so      0.0   4.0   8.0      0.0   0.0    0.0    0.0  0.0    0.0     12.0 

-libc-2.13.so            0.0 617.0 251.0      0.0 340.0    0.0    0.0  0.0    0.0   1208.0 

-ld-2.13.so              0.0  99.0 227.0      0.0   8.0    0.0    0.0  0.0    0.0    334.0 



Summary 

• Reduce Time-To-Market by efficient software crash 

analysis 

• Add information to crash dumps 

• Improve analysis 

• Continuous improvement based on experience 
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Questions? 
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Appendix: Resources 

• jointSPACE 

– http://jointspace.sourceforge.net/ 

• TimeDoctor 

– http://sourceforge.net/projects/timedoctor/ 
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