

Developing and Optimizing Linux on ARM

CELF Plenary Meeting
San Jose, 2005
Philippe Robin
Philippe.Robin@arm.com
ARM Ltd.

Overview

- Introduction
- Areas of optimization
 - Hardware optimisations
 - Development tool chain
 - Kernel and applications
 - Power Consumption, Security, Multiprocessing
 - Test and validation environment
- Evolution of the ARM Architecture
 - Impact on Linux kernel
 - Use of architectural features
- Development tools
- Summary

Linux Platform Components

ARM Architectures

Enhance performance through innovation

THUMB™: 35% code compression

DSP Extensions: Higher performance for fixed-point DSP

Jazelle™: up to 8x performance for java

Media Extensions up to 4x performance for audio & video

Preserving Software Investment through

ARM CPU Roadmap

Increased Processor Performance

ARM11 Family 500 DMIPS **ARM10 Family** 300 DMIPS **ARM9 Family** 150DMIPS **ARM7 Family**

Home Media Centres Digital TV Digital Set Top Box PDA's **Smart Phones** Router/Firewall Cable XDSL Modems PC Network Cards **Digital Camcorders Digital Cameras** Digital Audio players

Digital Photo Frames

Performance Gains

- Hardware optimizations for
 - MMU and Cache management
 - Interrupt handling
 - Real-Time
 - Code density
 - Multi-Processor
- Compiler and tool chain
 - Instruction scheduling
 - Use of new instructions
 - Code density
- Linux support
 - Optimize Linux kernel to fully utilize new architectural features

ARMv6 Architecture

- Compatibility with previous ARM architectures
- SIMD Media Instructions
 - 1.75X faster at media processing compared to ARMv5
- Improved Memory Management
 - Boost system performance by up to 30%
- Improved Mixed Endian and Unaligned data support
 - Improved processing of Big Endian data (eg. TCP/IP) in Little Endian (LE) systems
- Improved Interrupt latency for real time systems
 - Improved from 35 cycle worst case to 11 cycles in v6

The ARM11 Processor Family

- Based on ARMv6 architecture
 - Media SIMD
 - Fast interrupt modes
 - JazelleTM
 - Three power modes (Full, Standby and Dormant)
 - Tightly Coupled Memory (TCM)

 High speed, performance targeting embedded and application processing

Enhancements from ARM1136J-S™ Core

- ARM TrustZone[™] architecture extensions for CPU and system security
 - New secure state enabling creation of a trusted computing environment
 - Enables protection of code and data across entire memory hierarchy
- AMBA™ 3.0 (AXI) System Bus Interface
 - Higher data bandwidth, easier timing closure
 - Supports access to secure-aware memory and peripherals
- Intelligent Energy Manager (IEM) Compatible
 - Allows dynamic voltage and frequency setting under OS control to optimize energy usage / battery life
 - Supports multiple voltage domains for power-saving modes

Thumb-2 & Embedded Processors

- Thumb-2 core technology is an enhancement to the ARM architecture version 6.
- Thumb-2 core technology consists of:
 - new 16-bit Thumb instructions for improved program flow
 - new 32-bit Thumb instructions for improved performance and code size
 - new 32-bit ARM instructions for improved data handling

Linux Kernel – ARMv6 Support

- Optimize memory and cache handling
 - Minimise cache flushing
 - Benefits from Physically tagged cache
 - Prevent cache aliasing incoherencies
- Faster interrupt handling
 - Use of new CPS instruction to reduce number of cycles needed to handle interrupts
- Use Application Space Identifiers (ASIDs)
 - Optimize context switch time
 - Avoid need to flush on-chip translation buffers

Areas of Optimizations

- Real-Time support and performance
 - Open source and proprietary projects
 - Scheduling policies, interrupt handling, threading model etc.
 - Use regression test suites to validate and improve kernel performance and reliability
- Libraries
 - Reduced size and choice of optimised libraries
 - Floating point libraries, C libraries etc.
 - ARM ABI will allow more choices
- Power Management
 - Intelligent Energy Management (IEM)
 - Montavista Dynamic Power Management (DPM)
- Security and reliability
 - Encryption and protection mechanisms
 - Build on TrustZone technology
- SMP support
 - Add changes in kernel to support multiprocessor platforms

Key ARM Software with Linux

- Jazelle for Java bytecode acceleration
 - 3x to 8x time faster Java bytecode execution
 - Execute some parts of the Java Virtual Machine in hardware
- Power Management
 - IEM allowing savings up to 25% of battery life
 - Scale CPU frequency and voltage based on monitoring of the system activity
- 3D Graphics
 - Swerve: Industry-leading JSR-184 for 3D content
 - Also take benefit of hardware VFP support
- Security
 - TrustZone for device integrity and secure transactions
 - Partition and control the execution environment to prevent illegal access to critical code or data

Linux & Development Tool Chain

- Compiler is a key element in generating efficient and compact code
 - Requires in-depth knowledge of the micro-architecture
 - Support for latest architectural features
 - Requires extensive testing and validation
- Choice of development tools
 - New ARM Application Binary Interface (ABI) aims at providing compatibility between multiple tool chains
 - Allow re-use of libraries and existing code base
 - Can mix GNU based objects with libraries or objects optimized with other proprietary tool chains
 - Closely linked with debug and profiling tools

Supporting GCC and Linux for ARM

- ARM enabling GNU
 - Formal collaborative program to create a professionally supported ARM GNU Compiler

- Goals of the GCC project
 - Create stable releases of the ARM GCC compiler
 - Improve ARM architecture and micro-architecture support
 - Comply with the ABI for the ARM architecture
 - Enables inter-working of GCC and the RealView Developer Suite RVCT compilation Tools
 - Enables mixing of object code from both tool chains
 - Produce a binary release every 6 months
 - Enable support for targeting embedded Linux systems
- Available publicly through CodeSourcery's website

RealView Creating Optimal Reliable Code

Processor-specific optimizations

- Code scheduled to make best use of pipeline structure of the processor
- Peephole optimization to generate optimal code sequences

Selectable optimization levels

- Allows choice of best debug view or best code view
- Orthogonal to debug flag, so can produce debug capable, optimized code
- Choice of optimization for speed or code size to suit system requirements

RealView - Optimizations

- Removal of unused code
 - The compiler removes code sequences that are never executed, thus saving memory
 - The linker removes unused code sections and unused functions, thus saving memory
- Reducing the Power Consumption
 - With extensive performance optimizations
 - Increase instruction-throughput with no increase in clock frequency
 - With powerful code size optimizations
 - Small code size makes better use of I-Cache
 - Small code size reduces instructions to execute

Summary

- Each component plays an important role in achieving optimum performance
 - Processor, compiler, kernel, libraries and applications
 - Each must cooperate to optimize use of hardware resources
 - Optimizations are domain specific as each environment has specific performance and resource requirements
 - Adapt Linux kernel accordingly
 - Tools need to address performance requirements
 - Choice of the processor according to the targeted product
- Test and validation play a key role in maintaining and improving code quality and performance
 - Access to standard maintenance and validation test suites

Linux Open Source Community

Improving Linux through cooperation!

