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Introduction
.



Automated Testing Laboratory
.
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Actual Automated Testing Laboratory
.
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Automated Testing Laboratory – MinnowBoard MAX
.
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Automated Testing Laboratory – Odroid U3+
.
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Automated Testing Laboratory – HiKey
.
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Automated Testing Laboratory – Supporting hardware
.
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Automated Testing Laboratory – SD MUX
.
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SD MUX
.
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Motivation
.



Change life cycle
.
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Change acceptance
.
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Release engineering
.
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Primary tools
.

Open Build Service Jenkins
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Release Engineer role
.

1. Release engineer investigates build failures (if any)
2. Release engineer checks whether new images introduce any regressions
3. Release engineer approves inclusion of verified changes to the main
repository
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Release Engineer headache
.

• Complete image testing on multiple devices takes much time:

ttotal = tdownload + ntargets ×
(
tflash + ttest

)
• Monotonous – involves repeating the same set of actions
• Requires focus – processing similar results calls for an observant person
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Release Engineer dilemma
.

1. Can we test images less frequently?
2. Can we run fewer tests on new images?
3. Can we assume that successfully built packages work properly?
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Release Engineer credo
.

1. Resolve an issue as soon as it is discovered
2. Look for a solution, not just workaround
3. Don't release software that was never run on an actual device
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Room for improvement
.

• Complete image testing on multiple devices takes much time:

ttotal = tdownload + ntargets ×
(
tflash + ttest

)
• Monotonous – involves repeating the same set of actions
• Requires focus – processing similar results calls for an observant person
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Automation opportunities
with our solutions
.



Automation tasks categories
.

• Software
• Infrastructure

• Internal
• External

• Hardware
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Automation tasks examples
.

• Software
• Infrastructure

• Internal
• External

• Hardware

• Polling OBS for new images

• Getting new images from OBS
• Controlling hosts and targets
• Publishing test results
• Flashing target devices with new images
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Software – polling OBS and getting new images
.

• OBS lacks event mechanism
• Human-readable naming conventions
require parsing

• New image discovery is run
on multiple levels

• Scheduling tasks
• Queueing tasks Jenkins

21/42



Internal infrastructure – reliable communication with devices
.

OpenSSH
• Depends on other services
• Requires network connection

Serial console
• Lower rate of data transfer
• Less flexible than alternatives

Neither could be chosen︸ ︷︷ ︸
SDB

(Smart Debug Bridge)
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Internal infrastructure – configuration management
.

• Testlab-handbook on its own is not enough
• All changes in configuration are tracked in Testlab-host
• Improved deployments
• No more snowflakes!
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External infrastructure – results publishing
.

• Easily available
• With possibility for future reuse
• Preferably using existing services

• Sharing test environment information
• Publishing test results
• Providing data for future reuse

MediaWiki edited
by Pywikibot
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Hardware – flashing target devices with new images
.

• Current interface focused on user interaction
• Designed for single target device per host
• Architecture-specific procedure

25/42



Hardware – SD MUX
.



Board control

Hardware – SD MUX
.



Board control

Memory
card

Hardware – SD MUX
.



Board control

Target SDB/card connection

Memory
card

Hardware – SD MUX
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Board control

Host card connection

Target SDB/card connection

Memory
card

Hardware – SD MUX
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Board control
Host SDB/card access

Host card connection

Target SDB/card connection

Memory
card

Hardware – SD MUX
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Power switch

Board control
Host SDB/card access

Host card connection

Target SDB/card connection

Memory
card

Hardware – SD MUX
.



Controlling SD MUX
.

$ sdmuxctrl --help
Usage: sdmuxctrl command
-l, --list
-i, --info
-o, --show-serial
-r, --set-serial=STRING
-t, --init
-u, --status

(...)
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Former work flow
.

Requires release engineer's interaction
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SD MUX work flow
.

Fully automated process
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SD MUX – schematics
.



SD MUX – open-source
.

https://git.tizen.org/cgit/tools/testlab/sd-mux.git 37/42

https://git.tizen.org/cgit/tools/testlab/sd-mux.git


Future plans
.



What is next?
.

• Pre-test cases development
• More detailed monitoring of differences between tested images
• Improved fail management
• Improved resource management
• System distribution
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Conclusion
.



Summary
.

1. No need for reinventing the wheel in modern automation
2. Enforced limitations can be overcome with software
3. Custom hardware can simplify tasks
4. Automation pays off in the long term
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Questions?
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Thank you!

Paweł Wieczorek
p.wieczorek2@samsung.com

Samsung R&D Institute Poland



Further read

• https://wiki.tizen.org/wiki/Laboratory

• https://wiki.tizen.org/wiki/SD_MUX

• https://git.tizen.org/cgit/tools/testlab

https://wiki.tizen.org/wiki/Laboratory
https://wiki.tizen.org/wiki/SD_MUX
https://git.tizen.org/cgit/tools/testlab


Pictures used

• https://wiki.tizen.org/w/images/9/95/Testlab.JPG
• http://openbuildservice.org/images/obs-logo.png
• https://wiki.jenkins-ci.org/download/attachments/2916393/logo.png
• https://wiki.tizen.org/w/images/5/57/Tizen_Build_Process.gif
• https://by-example.org/wp-content/uploads/2015/08/openssh-logo.png
• https://pixabay.com/en/terminal-console-shell-cmd-dos-153150/
• https://pixabay.com/en/gears-options-settings-silhouette-467261/
• https://commons.wikimedia.org/wiki/File:Notification-icon-MediaWiki-logo.svg
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https://commons.wikimedia.org/wiki/File:Notification-icon-MediaWiki-logo.svg

	Introduction
	Motivation
	Automation opportunities with our solutions
	Future plans
	Conclusion
	Appendix

