
Automated Testing Laboratory
for Embedded Linux Distributions
.

Paweł Wieczorek
April 6, 2016

Samsung R&D Institute Poland



Agenda
.

1. Introduction

2. Motivation

3. Automation opportunities with our solutions

4. Future plans

5. Conclusion

1/42



Introduction
.



Automated Testing Laboratory
.

2/42



Actual Automated Testing Laboratory
.

3/42



Automated Testing Laboratory – MinnowBoard MAX
.

4/42



Automated Testing Laboratory – Odroid U3+
.

5/42



Automated Testing Laboratory – HiKey
.

6/42



Automated Testing Laboratory – Supporting hardware
.

7/42



Automated Testing Laboratory – SD MUX
.

8/42



SD MUX
.

9/42



Motivation
.



Change life cycle
.

10/42



Change acceptance
.

11/42



Release engineering
.

12/42



Primary tools
.

Open Build Service Jenkins

13/42



Release Engineer role
.

1. Release engineer investigates build failures (if any)
2. Release engineer checks whether new images introduce any regressions
3. Release engineer approves inclusion of verified changes to the main
repository

14/42



Release Engineer headache
.

• Complete image testing on multiple devices takes much time:

ttotal = tdownload + ntargets ×
(
tflash + ttest

)
• Monotonous – involves repeating the same set of actions
• Requires focus – processing similar results calls for an observant person

15/42



Release Engineer dilemma
.

1. Can we test images less frequently?
2. Can we run fewer tests on new images?
3. Can we assume that successfully built packages work properly?

16/42



Release Engineer credo
.

1. Resolve an issue as soon as it is discovered
2. Look for a solution, not just workaround
3. Don't release software that was never run on an actual device

17/42



Room for improvement
.

• Complete image testing on multiple devices takes much time:

ttotal = tdownload + ntargets ×
(
tflash + ttest

)
• Monotonous – involves repeating the same set of actions
• Requires focus – processing similar results calls for an observant person

18/42

..
AUT

OM
ATE



Automation opportunities
with our solutions
.



Automation tasks categories
.

• Software
• Infrastructure

• Internal
• External

• Hardware

19/42



Automation tasks examples
.

• Software
• Infrastructure

• Internal
• External

• Hardware

• Polling OBS for new images

• Getting new images from OBS
• Controlling hosts and targets
• Publishing test results
• Flashing target devices with new images

20/42



Automation tasks examples
.

• Software
• Infrastructure

• Internal
• External

• Hardware

• Polling OBS for new images
• Getting new images from OBS

• Controlling hosts and targets
• Publishing test results
• Flashing target devices with new images

20/42



Automation tasks examples
.

• Software
• Infrastructure

• Internal
• External

• Hardware

• Polling OBS for new images
• Getting new images from OBS
• Controlling hosts and targets

• Publishing test results
• Flashing target devices with new images

20/42



Automation tasks examples
.

• Software
• Infrastructure

• Internal
• External

• Hardware

• Polling OBS for new images
• Getting new images from OBS
• Controlling hosts and targets
• Publishing test results

• Flashing target devices with new images

20/42



Automation tasks examples
.

• Software
• Infrastructure

• Internal
• External

• Hardware

• Polling OBS for new images
• Getting new images from OBS
• Controlling hosts and targets
• Publishing test results
• Flashing target devices with new images

20/42



Software – polling OBS and getting new images
.

• OBS lacks event mechanism
• Human-readable naming conventions
require parsing

• New image discovery is run
on multiple levels

• Scheduling tasks
• Queueing tasks Jenkins

21/42



Internal infrastructure – reliable communication with devices
.

OpenSSH
• Depends on other services
• Requires network connection

Serial console
• Lower rate of data transfer
• Less flexible than alternatives

Neither could be chosen︸ ︷︷ ︸
SDB

(Smart Debug Bridge)
22/42



Internal infrastructure – configuration management
.

• Testlab-handbook on its own is not enough
• All changes in configuration are tracked in Testlab-host
• Improved deployments
• No more snowflakes!

23/42



External infrastructure – results publishing
.

• Easily available
• With possibility for future reuse
• Preferably using existing services

• Sharing test environment information
• Publishing test results
• Providing data for future reuse

MediaWiki edited
by Pywikibot

24/42



Hardware – flashing target devices with new images
.

• Current interface focused on user interaction
• Designed for single target device per host
• Architecture-specific procedure

25/42



Hardware – SD MUX
.



Board control

Hardware – SD MUX
.



Board control

Memory
card

Hardware – SD MUX
.



Board control

Target SDB/card connection

Memory
card

Hardware – SD MUX
.



Board control

Host card connection

Target SDB/card connection

Memory
card

Hardware – SD MUX
.



Board control
Host SDB/card access

Host card connection

Target SDB/card connection

Memory
card

Hardware – SD MUX
.



Power switch

Board control
Host SDB/card access

Host card connection

Target SDB/card connection

Memory
card

Hardware – SD MUX
.



Controlling SD MUX
.

$ sdmuxctrl --help
Usage: sdmuxctrl command
-l, --list
-i, --info
-o, --show-serial
-r, --set-serial=STRING
-t, --init
-u, --status

(...)

33/42



Former work flow
.

Requires release engineer's interaction

34/42



SD MUX work flow
.

Fully automated process

35/42



SD MUX – schematics
.



SD MUX – open-source
.

https://git.tizen.org/cgit/tools/testlab/sd-mux.git 37/42

https://git.tizen.org/cgit/tools/testlab/sd-mux.git


Future plans
.



What is next?
.

• Pre-test cases development
• More detailed monitoring of differences between tested images
• Improved fail management
• Improved resource management
• System distribution

38/42



Conclusion
.



Summary
.

1. No need for reinventing the wheel in modern automation
2. Enforced limitations can be overcome with software
3. Custom hardware can simplify tasks
4. Automation pays off in the long term

39/42



Questions?

39/42



Thank you!

Paweł Wieczorek
p.wieczorek2@samsung.com

Samsung R&D Institute Poland



Further read

• https://wiki.tizen.org/wiki/Laboratory

• https://wiki.tizen.org/wiki/SD_MUX

• https://git.tizen.org/cgit/tools/testlab

https://wiki.tizen.org/wiki/Laboratory
https://wiki.tizen.org/wiki/SD_MUX
https://git.tizen.org/cgit/tools/testlab


Pictures used

• https://wiki.tizen.org/w/images/9/95/Testlab.JPG
• http://openbuildservice.org/images/obs-logo.png
• https://wiki.jenkins-ci.org/download/attachments/2916393/logo.png
• https://wiki.tizen.org/w/images/5/57/Tizen_Build_Process.gif
• https://by-example.org/wp-content/uploads/2015/08/openssh-logo.png
• https://pixabay.com/en/terminal-console-shell-cmd-dos-153150/
• https://pixabay.com/en/gears-options-settings-silhouette-467261/
• https://commons.wikimedia.org/wiki/File:Notification-icon-MediaWiki-logo.svg

https://wiki.tizen.org/w/images/9/95/Testlab.JPG
http://openbuildservice.org/images/obs-logo.png
https://wiki.jenkins-ci.org/download/attachments/2916393/logo.png
https://wiki.tizen.org/w/images/5/57/Tizen_Build_Process.gif
https://by-example.org/wp-content/uploads/2015/08/openssh-logo.png
https://pixabay.com/en/terminal-console-shell-cmd-dos-153150/
https://pixabay.com/en/gears-options-settings-silhouette-467261/
https://commons.wikimedia.org/wiki/File:Notification-icon-MediaWiki-logo.svg

	Introduction
	Motivation
	Automation opportunities with our solutions
	Future plans
	Conclusion
	Appendix

