
ELC, May 2014

What’s going on with SPI?

• Hardware overview
• Framework overview
• Recent enhancements
• Future plans

Overview

Simple bidirectional serial bus with four signals:

• Master Out Slave In (MOSI)
• Master In Slave Out (MISO)
• Clock
• Chip select

• Little endian byte ordering for words

What is SPI?

Comparable with I2C:

• Four wires instead of two
• Typically 1-2 orders of magnitude faster
• Full duplex
• Very simple implementation

Applications

• Flash
• Mixed signal ICs
• DSPs

What is SPI?

• No support at all, using GPIOs
• Very slow and inefficient
• Commonly used for chip select

Controller hardware

• PIO based FIFOs
• Less slow
• Requires CPU access every word

• DMA based FIFOs
• Less work for CPU
• Higher setup overhead
• Faster for large blocks of data

• Dual and quad mode
• Extra data lines, mainly used with flash (v3.12)

● Specialised flash controllers

• No support at all, using GPIOs
• Very slow and inefficient
• Commonly used for chip select

• PIO based FIFOs
• Less slow
• Requires CPU access every word

• DMA based FIFOs
• Less work for CPU
• Higher setup overhead
• Faster for large blocks of data

• Dual and quad mode
• Extra data lines, mainly used with flash (v3.12)

• Specialised flash controllers

Controller hardware

Originally contributed by David Brownell
• Merged in 2.6.16 (released March 2006)
• Largely unchanged until recently

 Standard device model bus:
• Controllers and devices
• Device registration via machine driver/firmware

Basic software stack

Simple message based interface for devices
• List of transfers, for scatter/gather and mixed read/write
• Some settings can change per transfer/message
• Optionally asynchronous

Device interface

struct spi_transfer {
 const void*tx_buf;
 void *rx_buf;
 unsigned len;
};

void spi_message_init(struct spi_message *m);
void spi_message_add_tail(struct spi_transfer *t,
 struct spi_message *m);

int spi_async(struct spi_device *spi, struct
 spi_message *message);
int spi_sync(struct spi_device *spi,
 struct spi_message *message);

Device interface

Very basic:

int (*transfer)(struct spi_device *spi,
 struct spi_message *mesg);

Basic driver interface

Executes in atomic context!

Not just for bitbanging:

int (*setup_transfer)(struct spi_device *spi,
 struct spi_transfer *t);

void (*chipselect)(struct spi_device *spi, int is_on);
 int (*txrx_bufs)(struct spi_device *spi,
 struct spi_transfer *t);

• Factors out logic to do with transfer list
• Can even support DMA

“Bitbang” driver framework

• No code reuse outside of bitbang
• Lots of wheels of varying shapes
• Good ideas need to be copied

What’s missing?

Many ways of specifying/validation same information

• Selecting a transfer speed
• Bits per word settings
• Overriding these per transfer
• Validating buffer sizes

Standard parameter checking and handling

int (*prepare_transfer_hardware)(struct spi_master *m);
int (*transfer_one_message)(struct spi_master *m,

 struct spi_message *m);
int (*unprepare_transfer_hardware)(struct spi_master *m);

• Factors out code
• Standard synchronisation with suspend
• Standard runtime PM implementation
• Standard support for managing priority of pump

Contributed by Linus Walleij, merged in v3.4 (May 2012)

Message queue

Moves more logic from spi_bitbang into core:

int (*prepare_message)(struct spi_master *master,
 struct spi_message *message);

int (*unprepare_message)(struct spi_master *master,
 struct spi_message *message);

void (*set_cs)(struct spi_device *spi, bool enable);
int (*transfer_one)(struct spi_master *master,
 struct spi_device *spi,

 struct spi_transfer *transfer);

Merged in v3.13

Standard message parsing

Most drivers only handled some cases:

• Buffers need to be mapped before DMA
• Buffers may not be physically contiguous
• vmalloc()ed addresses need different mapping

Drivers provide a callback to check for DMA:

bool (*can_dma)(struct spi_master *master,
 struct spi_device *spi,
 struct spi_transfer *xfer);

If true passed sg_lists instead of buffers

Standard DMA mapping

• Extra data lines for higher speed
• Capability set when registering device
• Enabled per-transfer by device drivers

Contributed by Wang Yuhang, merged in v3.12

Dual and quad modes

What’s next?

• Handling controller chip select
• Standard way to set in DT

Standard GPIO chip select

Latency - spi_sync()

Device driver SPI thread Hardware/IRQ

Queue transfer

Start transfer
Wait...

Wait...
Start transfer

Wait...
Wake SPI

Schedule
Wake driver

Schedule
Return

Schedule

Latency - spi_async()

Device driver SPI thread Hardware/IRQ

Queue transfer

Start transfer
Wait...

Wait...
Start transfer

Wait...
Wake SPI

Schedule
Wake driver

Schedule
Return

Schedule

Start transfer Start transfer

Latency - complete in IRQ

Device driver SPI thread Hardware/IRQ

Queue transfer

Start transfer
Wait...

Wait...
Start transfer

Wait...
Wake driver

Schedule
Return

Schedule

Schedule

Latency - start immediately

Device driver SPI thread Hardware/IRQ

Queue transfer

Wait...

Start transfer
Wait...

Wake SPI

Wake driver

Schedule
Return

Start transfer

• Do DMA mapping while prior transfer runs
• Coalesce transfers and use hardware scatter/gather

Latency

• Messages validated once and used several times
• Saves iterating and checking
• Allows drivers to keep buffers DMA mapped
• Mainly for very high bandwidth applications

Work being done by Martin Sperl

Pre-validated messages

• Use DMA transfers to set chip select and parameters
• Requires dmaengine and gpiolib enhancements
• Extremely low CPU overhead, runs from interrupt

Work being done by Martin Sperl

Fully DMA driven queues

• Simple bus, not so simple software
• Much more active development recently

• New hardware
• More demanding performance requirements

Summary

More about Linaro: http://www.linaro.org/about/
More about Linaro engineering: http://www.linaro.org/engineering/

How to join: http://www.linaro.org/about/how-to-join
Linaro members: www.linaro.org/members

http://www.linaro.org/about/
http://www.linaro.org/engineering/
http://www.linaro.org/about/how-to-join
http://www.linaro.org/members

