€mbedded Linux

Conference
Europe

LIBIIO

A library for interfacing with Linux I1O devices

(27 October 2020) [JAas L LiNUX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

About the presenter

Name: Dan Nechita
Job: Software Development Engineer
Company: Analog Devices Inc.

Role: One of the maintainers of LibIIO code

ANALOG THE
DEVICES LINUX

FOUNDATION

1. Whatis LibII0? ==

2. Alook at the library structure
3. The Clanguage API

4. LibIIO bindings

5.

Practices that aim for a robust library

ANALOG
DEVICES I LI N ux

1. What is LibIIO?

* LiblIO:

— User-space library

— Around for more than 6 years and consistently
being improved

— Written in C language

— Cross platform: Linux, Windows, Mac OS

— License: LGPL version 2.1+

ANALOG
DEVICES I LI N ux

1. What is LibIIO?

* The purpose:

— To make it easier and faster to develop

applications that need to interact with Linux
Industrial 1/0 (I10) devices

Client
Application

¥

LibllO

{

Linux Kernel

¢ i ANALOG THE
3 oEvices L JLiNuX

11O devices FOUNDATION

1. What is Libl10? (Note on I10)

Quick note about Linux Industrial 1/0 (I10)

— Itis part of the Linux Kernel and it is a subsystem that
provides support for devices such as:

o Analog-to-digital converters (ADCs)

o Digital-to-analog converters (DACs)

o Accelerometers

o Inertial measurement units (IMUs), etc.

— More at:

o https://www.kernel.org/doc/html/v5.9 /driver-
api/iio/intro.html

o https://wiki.analog.com/software/linux/docs/iio/iio

ANALOG THE
DEVICES LINUX

FOUNDATION

https://www.kernel.org/doc/html/v5.9/driver-api/iio/intro.html
https://wiki.analog.com/software/linux/docs/iio/iio

1. What is LibIIO?

The API of Industrial I/0 subsystem is exposed through
sysfs at location:

— /sys/bus/iio/devices/*

ANALOG 1
DEVICES LI N U x

1. What is LibIIO?

An example of I10 device:

/sys/busliio/devices/iio:deviceO/name
/sys/bus/iio/devices/iio:deviceO/out_voltageO_V1_raw
/sys/bus/iio/devices/iio:deviceO/out_voltageO_V1_ scale
/sys/bus/iio/devices/iio:deviceO/out_voltageO_V1_ powerdown
/sys/bus/iio/devices/iio:deviceO/out_voltageO_V1_powerdown_mode
/sys/bus/iio/devices/iio:deviceO/out_voltagel V2 raw
/sys/busliio/devices/iio:deviceO/out_voltagel V2 scale
/sys/bus/iio/devices/iio:deviceO/out_voltagel V2 powerdown
/sys/bus/iio/devices/iio:deviceO/out_voltagel V2_powerdown_mode
Isys/bus/iio/devicesl/iio:deviceO/out_voltage powerdown_mode_available
/sys/busl/iio/devices/iio:deviceO/sampling_rate
/sys/busl/iio/devices/iio:deviceO/scan_elements/in_voltage0_en
/sys/busl/iio/devicesl/iio:deviceO/scan_elements/in_voltageO_index
/sys/busl/iio/devices/iio:deviceO/scan_elements/in_voltageO_type
/sys/busl/iio/devicesl/iio:deviceO/scan_elements/in_voltagel en
Isys/busl/iio/devicesl/iio:deviceO/scan_elements/in_voltagel_index

/sys/busl/iio/devices/iio:deviceO/scan_elements/in_voltagel_type ANALOG e
DDEVICES L JLINUX

AHEAD OF WHAT'S POSSIBLE™

1. What is LibIIO?

Libiio will:

* identify the I1O devices that can be used

* identify the channels for the device

* identify the attributes specific to the channel
* identify the attributes specific to the device

* create a context where devices will be placed

ANALOG THE
3 oEvices L JLiNuX

FOUNDATION

1. What is LibIIO?

e LiblIIO can run on:

— An embedded system running Linux that includes
[10 drivers for devices that are physically
connected to the system, such as ADCs, DACs, etc.
Also can run on an embedded system with a non-
Linux framework. (Target)

— A PC running a Linux distribution, Windows, Mac
0S, OpenBSD/NetBSD that is connected to the
embedded system through a network, USB or
serial connection. (Remote)
3%'&%% L JLiNux

1. Whatis LiblIO?

2. Alook at the library structure <=

3. The Clanguage API

4. LibIIO bindings

5. Practices that aim for a robust library

ANALOG
DEVICES I LI N ux

2. A look at the library structure

The library is composed by one high-level API

and several backends:

Local - interfaces the Linux through sysfs virtual filesystem
Network - interfaces the iiod server through a network link
USB - interfaces the iiod server through a USB link

XML - interfaces a XML file
Serial - interfaces tiny-iiod throught a serial link

The iiod and tiny-iiod are part of the libIIO.

1l W

ANALOG THE
DEVICES L LINUX

FOUNDATION

2. A look at the library structure

Software stack for a network connection

=,

Linux Kernel

A A
Y A

110 devices

Client 110D Server Client
Application A Application
on Linux f é on Windows
A 1 : A
LibllO : I LibllO l
v / Linux v . : / Windows
|
High-level API | : High-level API
|
1
Local Network ! 1
backend | backend : 1 bIEEERE = =]
1
! 1

Network link

ANALOG THE
DDEVICES L !?)!ngé

AHEAD OF WHAT'S POSSIBLE™

What is LibIIO?

A look at the library structure

The C language API &=

Code examples

LibIIO bindings

Practices that aim for a robust library

A o

ANALOG
DEVICES I LI N ux

3. The C language API

There are 4 data types that together make
almost all of the API:

* iio_context (represents an instance of the library)
* iio_device

* iio_channel

* iio_buffer

ANALOG 1
DEVICES LI N U x

3. The C language API

The hierarchy of the 4 types:

1
0..%*
1
iiod
0..*

kernel iio drivers

0..%*
debug
attribute

0..1 0..*
ANALOG
ﬁ ﬁ i

THE

LINUX

FOUNDATION

3. The C language API

Scanning for I10 contexts:

lio_create_scan_context()
lio_scan_context_get_info_list()
lio_context_info_get_description()
lio_context_info_get_uri()
lio_create_scan_block()
lio_scan_block scan()
lio_scan_block get info()

lio_scan_context_destroy()
lio_context_info_list _free()

lio_scan_block destroy() [y AnLoe - T UX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

3. The C language API

Example of searching for contexts:

struct iio_scan context *scan_ctx;
scan_ctx = iio_create scan_context(NULL, 0);

struct iio_context info **info;
llo_scan_context get info_list(scan_ctx, &info);

const char *description = iio_context info get description(info[0]);
const char *uri = iio_context_info_get_uri(info[O]);

lio_context info_list free(info);

lio_scan_context_destroy(scan_ctx); [y ANaLoe .

DEVICES L LINUX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

3. The C language API

Creating I10 contexts:

lio_create default_context() [* local or IOD_REMOTE env_var */
lio_create local context() [* local */
lio_create xml_context() [* from XML file */

lio _create xml context mem() /*from XML data stored in memory */
lio _create network context() /* network: IPv4 or IPv6 */

lio_create context from uri() /* takes Uniform Resource Identifier */
lio_context_clone() [* duplicate context */

iio_context_destroy()

ANALOG THE
3 oEvices L JLiNuX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

3. The C language API

Example of creating different types of contexts:

struct iio_context * local_ctx;
local _ctx = iio_create local context();

struct iilo_context * network_ctx;
network ctx =iio_create network context(“ip:192.168.100.15");

struct iilo_context * usb_ctx;
usb_ctx = iio_create context from_uri(“fusb:3.80.5"); /*usbh:[device:port:instance] */

struct iio_context * serial_ctx; ANALOG
serial_ctx = iio_create context from_uri(“serial:/dev/ttyUSB0,115200,8n1%); e
LA ENOX

[* serial:[port],[baud],[config] */

3. The C language API

Navigating through the context:

* Device objects
lio_context_get devices_count()
lio_context_get device()
lio_context_find_device()

* Channel objects
lio_device get _channels_count()
lio_device_get_channel()
lio_device find_channel()

ANALOG THE
3 oEvices L JLiNuX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

3. The C language API

Example of going through all devices and through all channels of each device

struct iio_context * local_ctx;
local _ctx = iio_create local context();

int I;
for (i=0; i <iio_context get devices count(local_ctx); ++i) {
struct iio_device *dev = iio_context get device(local_ctx, I);
int j;
for j = 0; j<liio_device get channels count(dev); ++)) {
struct iio_channel *channel = iio_device get channel(dev, j);

} ANAL THE
> Frarreas L JLiNuX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

3. The C language API

The attributes (or parameters) can be identified by name, they can
represent a value or an action and belong to one of the following

types:

* 1io_context
— Getattributes count: iio_context_get attrs_count()
— Getattribute atindex: iio_context_get_attr()

* ilo_device
— Getattributes count: iio_device get attrs _count()
— Getattribute at index: iio_device get attr()

* ijio_channel
— Get attributes count: iio_channel get attrs _count()
— Get attribute atindex: iio_channel get_attr()

* iio_buffer
— Get attributes count: iio_device get buffer attrs count()
— Getattribute atindex: ii0_device get buffer attr()

ANALOG THE
3 oEvices L JLiNuX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

3. The C language API

Reading from or writing to attributes:

* Read device-specific attributes:
lio_device_attr_read()
lio_device_attr_read_all()
lio_device_attr_read_bool()
lio_device_attr_read_longlong()
lio_device_attr_read_double()

* Read channel-specific attributes:

lio_channel_attr_read()
lio_channel_attr_read_all()
lio_channel_attr_read_bool()
lio_channel_attr_read_longlong()
lio_channel_attr_read_double()

* Write device-specific attributes:
lio_device_attr_write()
lio_device_attr_write_all()
iio_device_attr_write_bool()
lio_device_attr_write_longlong()
lio_device_attr_write_double()

* Write channel-specific attributes:
lio_channel_attr_write()
iio_channel_attr_write_all()
lio_channel_attr_write_bool()
iio_channel_attr_write_longlong()
lio_channel_attr_write_double()

ANAL THE
> Frarreas L JLiNuX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

3. The C language API

Capturing samples from or sending samples to device:

These two actions are done through the iio_buffer object and its functions.
Steps:
* Enable channels
lio_channel _enable(), iio_channel disable(), iio_channel is_enabled()
The enable/disable will actually happen when the iio_buffer is created.

Not all channels can be enabled, only those of type ‘scan_element’. This can be checked
with iio_channel is scan element(). A ‘scan_element’ is a channel capable of streaming
data into/from a buffer.

* Create buffer
lio_device_create_buffer(), iio_buffer_destroy()
* Refill a buffer (for an input device)

To update the buffer with new samples: iio_buffer refill() 3 ANAQS e

DEVICES L LINUX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

3. The C language API

Capturing samples from or sending samples to device:

* Push to a buffer (for an output device)
— To send new samples to the buffer: iio_buffer push()

If the iio_buffer object has been created with the "cyclic" parameter set, and the kernel
driver supports cyclic buffers, the submitted buffer will be repeated until the iio_buffer is
destroyed, and no subsequent call to iio_buffer push() will be allowed.

* Push a subset of samples to a buffer (for an output device)
— To send fewer samples than the size of the buffer: iio_buffer push partial()

ANALOG THE
3 oEvices L JLiNuX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

3. The C language API

Accessing samples from the iio_buffer:

* Iterating over the buffer with a callback
Libiio provides a way to iterate over the buffer by registering a callback function, with the
lio_buffer foreach sample() function.
The callback function will be called for each "sample slot" of the buffer, which will contain a
valid sample if the buffer has been refilled, or correspond to an area where a sample should
be stored if using an output device.

ANALOG THE
3 oEvices L JLiNuX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

3. The C language API

Accessing samples from the iio_buffer:

Example:

ssize_t sample_cb(const struct iio_channel *chn, void *src, size_t bytes, void *d)

{

/* Use "src" to read or write a sample for this channel */

}

int main(void)

{

lio_buffer_for_each_sample(buffer, sample_cb, NULL);

Note that the callback will be called in the order that the samples appear in the buffer, and
only for samples that correspond to channels that were enabled.

ANALOG THE
3 oEvices L JLiNuX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

3. The C language API

Accessing samples from the iio_buffer:

* Iterating on the samples with a for loop
This method allows you to iterate over the samples slots that correspond to one channel. As such,
it is interesting if you want to process the data channel by channel.

It basically consists in a for loop that uses the functions iio_buffer first(), iio_buffer step() and
lio_buffer_end():

for (void *ptr = iio_buffer first(buffer, channel); ptr < iio_buffer end(buffer); ptr +=
lio_buffer step(buffer)) {
[* Use "ptr” to read or write a sample for this channel */

}

ANALOG THE
3 oEvices L JLiNuX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

What is LibIIO?

A look at the library structure
The C language API

LibIIO bindings <=

g1 s N

Practices that aim for a robust library

ANALOG
DEVICES I LI N ux

4. LiblIO bindings

* Can be used directly in C++

* Python

 C#H#

Managed separately outside of LibIIO repository:
* Rust:
https://github.com/fpagliughi/rust-industrial-io
* Node,js:

https://github.com/drom/node-iio

* GNU Radio:
https://github.com/analogdevicesinc/gr-iio

ANALOG THE
3 oEvices L JLiNuX

FOUNDATION

https://github.com/fpagliughi/rust-industrial-io
https://github.com/drom/node-iio
https://github.com/analogdevicesinc/gr-iio

4. LiblIO bindings

Python bindings:

* The python bindings consist of a .py file
(https://github.com/analogdevicesinc/libiio /blob/master/bindings/python/iio.py)

* The ‘ctypes’ modules has been used to write the bindings

* Since v0.21 the python bindings have been available through pypi, and therefore can
be installed with pip:

pip install pylibiio
* Doc: https://analogdevicesinc.github.io/libiio /master/python/index.html

ANALOG THE
DDEVICES |_ LINUX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

https://github.com/analogdevicesinc/libiio/blob/master/bindings/python/iio.py
https://analogdevicesinc.github.io/libiio/master/python/index.html

4. LiblIO bindings

C# bindings:
They cover the full panel of features that libiio provides.

* The C# bindings are spread across multiple files:
— ScanContext.cs, Context.cs, Devices.cs, Channel.cs, IOBuffer.cs, Attr.cs, Trigger.cs, loLib.cs
— Each of these files provide a couple of methods that directly call their C counterpart

* Doc: https://analogdevicesinc.github.io/libiio /master/csharp/index.html

ANALOG THE
DEVICES LINUX
AHEAD OF WHAT'S POSSIBLE™ L FOUNDATION

https://analogdevicesinc.github.io/libiio/master/csharp/index.html

4. LiblIO bindings

GNU Radio integration:

IO Device Source

LibIIO can be integrated with GNU Radio PO

through the 110 blocks: iio_device_source and e el s
Buffer size: 32,758k

iio_device_sink. Decimation: 1
Parameters:

These blocks are available through the gr-iio

module.

The iio_device_source provides configuration fields for:
* Choosing the context (110 context URI)

* Enabling the channels (Channels - e.g [“voltage0”])
* Setting the buffer size (Buffer size)

¢ Decimation

* Changing values of device attributes (Parameters)

Q‘ Properties: 110 Device Source

EE!’]__E_‘__F__E_!E | Advanced | Documentation |

*

b ‘ iio_device_source_0

110 context URI

PHY Device Name/ID

peuce name/ [

Channels [
Buffer size 0xB000
Decimation 1
Parameters [

Check "$device" failed.
Check "$device_phy" failed.
Check "len($channels) = 0" failed.

Source - out{0):

nnnnnnnnnnnnnnnn

-

<Hok ‘ & cancel | oF Apply
ANALOG THE
DEVICES | _ JLINUX

AHEAD OF WHAT'S POSSIBLE™

4. LiblIO bindings

GNU Radio integration:

0 Device Sink
II0 context WRI: kocal:
Device Hame/ID:
Buffer size: 32,768k

The iio_device_sink provides
Interpolation: 1
configuration fields for: Cyclic: Faise

|: PHY Device Hame/ID:

* Choosing the context (IIO context URI, =

* Enabling the channels (Channels - e.g [“voltage0”])
* Setting the buffer size (Buffer size)

* Interpolation

* Setting the Cyclic flag

* Changing values of device attributes (Parameters)
e.g. ([“in_voltage0_samplerate=24000"])

Q‘ Properties: IO Device Sink

pd

General | Advanced | Documentation |

D |ito_device_sink o
110 context URI

pevice rame/» [
(1
0x8000
1

PHY Device Name/ID

Channels

Buffer size

Interpolation

Cyclic False | ¥ |

Parameters |[]

Check "$device" failed.
Check "$device_phy" failed.

Check "len($channels) = 0" failed.

Sink - in(0):

Fomck fm b b hd

<Jok ‘ .%;ancm‘ of Apply

ANALOG THE
3 oEvices L JLiNuX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

1. Whatis LiblIO?

2. Alook at the library structure

3. The Clanguage API

4. LibIIO bindings

5. Practices that aim for a robust library <=

ANALOG
DEVICES I LI N ux

5. Practices that aim for a robust library

Practice 1:

Development using a Pull-Request system where each PR is subject to review. No

PR can be merged without at least one approval. Pushing commits directly to master
is disabled.

Practice 2:
Enable as many warnings as possible: -Wall, -Wextra, -Wpendatic, -std=C99

The warnings are treated as errors. This enforces to not have warnings pile up.
The -Werror flag will treat warnings as errors but only when LiblIIO is built by CI.

ANALOG THE
3 oEvices L JLiNuX

FOUNDATION

5. Practices that aim for a robust library

Practice 3:

Use Continuous Integration (CI) when a PR is submitted (also for regular
branches)

All checks have passed Hide all checks
4 successful checks

v ** Codacy/PR Quality Review — Up to standards. A positive pull request Details
vy @ continuous-integration/appveyor/branch — AppVeyor build succeeded Dietails
' @ continuous-integration/travis-cifpr — The Travis Cl build passed Details
' & continuous-integration/travis-ci/push — The Travis Cl build passed Details
QoticE |~ JLinux
FOUNDATION

AHEAD OF WHAT'S POSSIBLE™

5. Practices that aim for a robust library

Appveyor checks Windows builds.
Travis checks MacOS builds, Ubuntu(Jessie, Stretch) builds, CentOS (6, 7, 8) builds.

Practice 4:
Make use of static analyzers to look for code issues:
— Coverity (as one of the Travis jobs)
— Codacy (integrated with Github)

ANALOG THE
3 oEvices L JLiNuX

FOUNDATION

Other aspects of the library

* The LibllO ABI tries to be both backwards and
forwards compatible

» Uses CMake to facilitate the building of Libiio
* One header (iio.h) and one shared library

* Doxygen generated API documentation

- Latest release is: v0.21 (26 releases so far)

ANALOG 1
DEVICES L | N U x

LiblIO dependencies

« Core dependencies: libxml2, bison, flex
- Backends dependencies:
= Local: libaio
= USB: libusb
= Network: libavahi
= Serial: libserialport
- Documentation dependencies: doxygen, graphviz

ANALOG 1
DEVICES LI N U x

Further reading on libllO

Hosted on:

https://github.com/analogdevicesinc/libiio
* Welcome page:
https://analogdevicesinc.github.io/libiio/master/index.html

 API documentation:
https://analogdevicesinc.qgithub.io/libiio/master/libiio/index.html

* Wiki libllO overview:
https://wiki.analog.com/resources/tools-software/linux-software/libiio

* Wiki libll1O internals:
https://wiki.analog.com/resources/tools-software/linux-software/libiio _internals

ANALOG THE
3 oEvices L JLiNuX

FOUNDATION

https://github.com/analogdevicesinc/libiio
https://analogdevicesinc.github.io/libiio/master/index.html
https://analogdevicesinc.github.io/libiio/master/libiio/index.html
https://wiki.analog.com/resources/tools-software/linux-software/libiio
https://wiki.analog.com/resources/tools-software/linux-software/libiio_internals

Thank you!

THE

DDEVICES |_ LINUX

AHEAD OF WHAT'S POSSIBLE™ FOUNDATION

€Embedded Linux

Conference
—urope

&3

