
PMIC: First one to turn on and the last 
one to turn off 

Embedded Linux Conference 2019 

Keerthy Jagadeesh 

1 



Agenda 

• Introduction to PMIC 

• Why do we need PMIC? 

• Main components of PMIC 

• Regulator driver overview 

• Types of regulators 

• Other common components 

• I2C Debugging in u-boot 

• I2C Debugging in kernel 

• Hardware debug 

 

 

 

 

 

• Device/User safety 

2 



Introduction to PMIC 

• Power management integrated circuits. 

• Communicates with the host Processor via I2C or SPI. 

• A PMIC is most commonly used in mobile phones & portable media players to 

decrease the amount of space required. 

• Primary responsibility for implementing power on/off sequence. 

• Feeding multiple voltage sources to SoCs 

• Power supply types: LDOs, SMPS, DC/DC convertors 

• May also provide RTC, GPIO, ADC, Watchdog & even thermal sensor support. 

• Some PMICs also include Battery charging support. 

3 



Why PMIC 

• One stop solution for all the voltage requirements for the whole system 

including the SoC, RF, external codecs, modem etc. 

• Even when multiple regulators are present PMICs offer granular voltage 

control. Ex: TPS65218. 

• Enables deeper power management. 

• ADC can be used to monitor variety of voltage and current parameters. 

• Thermal sensor can be used to monitor the device temperature. 

• RTC – Real time clock help keep track of time. 

 

 

 4 



Example: TPS65218 

 

 

 

 

5 



Example: TPS659039 

 

 

 

 

6 



DRA7 Power Tree 

7 



Types of voltage regulators 

• LDO - A low-dropout linear regulator: 
– LDOs are simple to regulate, create very little noise 

– Requires no inductor for operation 

– Produce a highly accurate output voltage 

– Use of a pass transistor creates excessive heat, leading to reliability issues and low efficiency levels 

– LDOs are most often used in low-power applications where these drawbacks are minimized by the nature of the 

application 

• Switch-mode power supplies (SMPS): 
– Most popular power supply today because of their high efficiency 

– Store energy in a capacitor or inductor, and repetitively switches its transistor on and off 

– Low heat levels & SMPSs typically have efficiency levels above 80% 

– High cost and complex design 

– SMPSs can create high levels of noise and ripple, which decreases the accuracy of output voltage 

– SMPSs are usually used in high power applications 

8 



Linux modeling of PMIC 

• MFD: It is very natural to model the PMIC as a multi function device. As it caters 

to Voltage, ADC, GPIO, thermal, RTC etc. 

• Most certainly has regulator drivers. 

• ADC/GPIO/Thermal/RTC drivers can also be present based on the HW. 

9 

MFD Driver 

GPIO Driver Regulator driver ADC Driver RTC Driver 



MFD Driver nuances 

• Initialize the regmap - devm_regmap_init_i2c 

• Register the interrupt handler & configure the interrupt controller as PMIC 

can potentially have multiple sources that can generate interrupts. 

• Enable probing of child device drivers - mfd_add_devices 

• Perform any PMIC specific pad configs 

• Set any client specific data when multiple versions are supported. 

10 



Device Tree Modelling with an example 

&i2c0 { 

        pinctrl-names = "default"; 

        pinctrl-0 = <&i2c0_pins>; 

        clock-frequency = <100000>; 

        tps65218: tps65218@24 { 

                reg = <0x24>; 

                compatible = "ti,tps65218”; 

                interrupts = <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>; /* NMIn */ 

                interrupt-controller; 

                #interrupt-cells = <2>; 

                dcdc1: regulator-dcdc1 { 

 regulator-name = "vdd_core"; 

 regulator-min-microvolt = <912000>; 

 regulator-max-microvolt = <1144000>; 

 regulator-boot-on; 

 regulator-always-on; 

                }; 

}; 

 

 

 

 

 

 

11 



Regulator Driver nuances 

• devm_regulator_register: Register all the regulators to the regulator framework. 

• Populate necessary hooks for enable/disable. This is turn on/off the regulators. 

• Populate get/set voltage hooks to read and write the voltage values. 

• One can also set/get current limit hooks. 

• Make use of regulator_linear_range to provide vsel to voltage conversion and 

vice versa. 

• map_voltage to map the voltages 

• set_ramp_delay : To take care of the slew rate that allows regulators ramp up 

and ramp down time. 

12 



Types of regulators in Linux 

• Fixed regulators: Voltage is fixed. Only on/off support. 

• Variable voltage DC-DC convertors, SMPS, LDO regulators. 

• Variable regulators cater to a range of voltages with fixed number of steps. 

• Allows DVFS – dynamic voltage frequency scaling. 

• Allows to lower voltages during low power modes. 

• Variable voltage regulators are also used as cooling agents. 

• GPIO Regulators: GPIOs can also be modelled as regulators where in the high 

value corresponds to a discrete value of voltage and the low corresponds to 

another discrete value. 

 

13 



Regulator Device Tree nodes 

dcdc1: regulator-dcdc1 { 

 regulator-name = "vdd_core"; 

 regulator-min-microvolt = <912000>; 

 regulator-max-microvolt = <1144000>; 

 regulator-boot-on; 

 regulator-always-on; 

}; 

 

ldo1: regulator-ldo1 { 

 regulator-min-microvolt = <1800000>; 

 regulator-max-microvolt = <1800000>; 

 regulator-boot-on; 

 regulator-always-on; 

}; 

 
14 



Regulator Device Tree nodes - 2 

vpo_sd_1v8_3v3: gpio-regulator-TPS74801 { 

 compatible = "regulator-gpio"; 

 regulator-name = "vddshv8"; 

 regulator-min-microvolt = <1800000>; 

 regulator-max-microvolt = <3300000>; 

 regulator-boot-on; 

 vin-supply = <&evm_5v0>; 

 gpios = <&gpio7 11 GPIO_ACTIVE_HIGH>; 

 states = <1800000 0x0 

   3300000 0x1>; 

}; 

15 



GPIO Driver nuances 

• devm_gpiochip_add_data: One time registration with the gpio framework 

• Gpio set/get direction to either configure as input or output. 

• GPIO set get to retrieve the value of gpio level. 

• Set_config enables more config options. 

• Gpio_request: optional hook for chip-specific activation, such as enabling 

module power and clock; may sleep 

• Gpio_free: optional hook for chip-specific deactivation, such as disabling module 

power and clock; may sleep 

• Set_multiple: Assigns output values for multiple signals 

16 



TPS659038 GPIO Device Tree 

• &i2c1 {  

        status = "okay";  

        clock-frequency = <400000>;  

 

        tps659038: tps659038@58 {  

                compatible = "ti,tps659038";  

                reg = <0x58>;  

                interrupt-parent = <&gpio1>;  

                interrupts = <0 IRQ_TYPE_LEVEL_LOW>;  

                #interrupt-cells = <2>;  

                interrupt-controller;  

                ti,system-power-controller;  

                ti,palmas-override-powerhold;  

 

                tps659038_gpio: tps659038_gpio {  

                        compatible = "ti,palmas-gpio";  

                        gpio-controller;  

                        #gpio-cells = <2>;  

                };  

};  

 

gpio_fan: gpio_fan {  

        /* Based on 5v 500mA AFB02505HHB */  

        compatible = "gpio-fan";  

        gpios =  <&tps659038_gpio 2 GPIO_ACTIVE_HIGH>;  

        gpio-fan,speed-map = <0     0>, <13000 1>;  

        #cooling-cells = <2>;  

};  

 

17 



RTC Driver nuances 

• Clear all the prior rtc interrupts 

• Populate the rtc dev ops 

– .read_time 

– .set_time 

– .read_alarm 

– .set_alarm 

– .alarm_irq_enable 

• devm_rtc_device_register 

• Register the rtc interrupt using devm_request_threaded_irq 

 

18 



TPS659038 RTC Device Tree 

• &i2c1 {  

        status = "okay";  

        clock-frequency = <400000>;  

 

        tps659038: tps659038@58 {  

                compatible = "ti,tps659038";  

                reg = <0x58>;  

                interrupt-parent = <&gpio1>;  

                interrupts = <0 IRQ_TYPE_LEVEL_LOW>;  

 

                #interrupt-cells = <2>;  

                interrupt-controller;  

 

                ti,system-power-controller;  

                ti,palmas-override-powerhold;  

 

                tps659038_rtc: tps659038_rtc {  

                        compatible = "ti,palmas-rtc";  

                        interrupt-parent = <&tps659038>;  

                        interrupts = <8 IRQ_TYPE_EDGE_FALLING>;  

                        wakeup-source;  

                };  

};  

 

19 



Debugging 

• U-boot & kernel prints to start with to trace the i2c register values 

• Cat /sys/class/regulator/regulator*/* 

– Microvolts gives the actual voltage value 

– State tells whether regulator is turned on or not 

– Microamps gives current drawn 

– Other sysfs nodes that give out a lot of information about regulator. 

• Enable CONFIG_CMD_REGULATOR in u-boot to get the regulator state and 

voltage. 

20 



U-boot I2C debug tools 

• First need to assign i2c device using – i2c dev 0 

• One can dump the i2c registers of a particular Slave ID using: 

i2c md ‘slave_id’ 

• One can modify the registers using any of the i2c mw or i2c mm 

• Example: i2c dev 0 

Setting bus to 0 

   i2c md 0x58 0x20 

   0020: 11 00 be 3a 00 00 be 3e 00 00 00 00 11 00 c7 32    ...:...>.......2 
   i2c mw 0x58 0x23 0x3B 

   i2c md 0x58 0x20      
   0020: 11 00 be 3b 00 00 be 3e 00 00 00 00 11 00 c7 32    ...;...>.......2 
   i2c speed 

   Current bus speed=400000 

 

 

 

 

21 



Kernel I2C debug tools 

• i2cdump [-f] [-y] [-r first-last] I2CBUS ADDRESS 

   Command: i2cdump -f -y 0x0 0x58                                                                                             

   Output: No size specified (using byte-data access) 

   0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f    0123456789abcdef 

   00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00    ................ 

• i2cget [-f] [-y] I2CBUS CHIP-ADDRESS [DATA-ADDRESS [MODE]] 

 

Command:  i2cget -f -y 0x0 0x58 0x23                                                                                     

Output: 0x3b 

 

 

 

 

22 



Kernel I2C debug tools - 2 

• i2cset [-f] [-y] [-m MASK] [-r] I2CBUS CHIP-ADDRESS DATA-ADDRESS 

[VALUE] ... [MODE] 

 
Command: i2cset -f -y 0x0 0x58 0x23 0x3b 

   Command: i2cdump -f -y 0x0 0x58      

   Output: No size specified (using byte-data access) 

   0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f    0123456789abcdef 

   00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00    ................ 

   10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00    ................ 

   20: 11 00 be 3b 00 00 be 3e 00 00 00 00 11 00 c7 32    ?.?;..?>....?.?2 

 

    

 

 

 

23 



I2C Protocol fundamentals 

24 

• Start: the master device leaves SCL high and pulls SDA low 
 

• Address Frame: 7-bit address 
 

• R/W: a R/W bit indicating whether this is a read (1) or write (0) operation 
 

• NACK/ACK bit: receiving device pulls the SDA line low before the 9th clock 
pulse means ACK otherwise it is a NACK. 
 

• Data Frames: The master will simply continue generating clock pulses at a 
regular interval, and the data will be placed on SDA by either the master or 
the slave, depending on whether the R/W bit indicated a read or write 
operation 
 

• Stop: Stop conditions are defined by a 0->1 (low to high) transition on SDA 
after a 0->1 transition on SCL, with SCL remaining high 
 



I2C Hardware debug - 2 

25 

Example showing a normal 
i2c write sequence followed 

by Ack 



I2C Hardware debug 

26 

Probe the I2C Clock and Data lines 

 
Check with the standard expected patterns 

for read/write 

 
Any discrepancy means HW is not 

behaving as expected 

 

For example Read Nack 



I2C Hardware debug - 3 

27 

Total phase 

Aardvark I2C 

Protocol analyzer. 

 

A simple tool that 

tracks every 

transaction. 

 

Expects i2c clock 

and data lines 

connected. 

 

Snoops on that two 

lines. Helps catch 

the buggy 

transaction. Ex: 

The one in the end 

has no data. 



Debug Summary 

• We Don’t need a sledge hammer to break open the eggs. 

• Start with simple prints, sysfs entries & software debug tools. 

• Only if the kernel is crashing get on to multimeter & oscilloscope. 

• I2c protocol analyzers only when we suspect a hardware bug. 

28 



Thank You 

29 



References 

• TPS65218 Public Data Sheet: 

http://www.ti.com/lit/ds/symlink/tps65218.pdf 

• http://www.ti.com/lit/ug/sprui50/sprui50.pdf 

• https://www.kernel.org/ Linux Mainline kernel 

• http://events17.linuxfoundation.org/sites/events/files/slides/schulz-

pmics-keep-power-in-your-hands.pdf 

• https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-

Supplies-for-Industrial-Automation-Equipment/44 

• https://manpages.debian.org/unstable/i2c-tools/i2cset.8.en.html 

30 

http://www.ti.com/lit/ds/symlink/tps65218.pdf
http://www.ti.com/lit/ds/symlink/tps65218.pdf
http://www.ti.com/lit/ds/symlink/tps65218.pdf
http://www.ti.com/lit/ug/sprui50/sprui50.pdf
https://www.kernel.org/
https://www.kernel.org/
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/schulz-pmics-keep-power-in-your-hands.pdf
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://www.motioncontrolonline.org/blog-article.cfm/LDOs-vs-SMPS-Power-Supplies-for-Industrial-Automation-Equipment/44
https://manpages.debian.org/unstable/i2c-tools/i2cset.8.en.html
https://manpages.debian.org/unstable/i2c-tools/i2cset.8.en.html
https://manpages.debian.org/unstable/i2c-tools/i2cset.8.en.html


Back Up slides 

• -f : Force access to the device even if it is already busy. By default, i2cset will 

refuse to access a device which is already under the control of a kernel driver. 

Using this flag is dangerous, it can seriously confuse the kernel driver in 
question. It can also cause i2cset to silently write to the wrong register. So use 

at your own risk and only if you know what you're doing. 

• -y: Disable interactive mode. By default, i2cset will wait for a confirmation from 

the user before messing with the I2C bus. When this flag is used, it will perform 

the operation directly. This is mainly meant to be used in scripts. 

31 


